1,397 research outputs found

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Quantum machine learning for particle physics using a variational quantum classifier

    Get PDF
    Quantum machine learning aims to release the prowess of quantum computing to improve machine learning methods. By combining quantum computing methods with classical neural network techniques we aim to foster an increase of performance in solving classification problems. Our algorithm is designed for existing and near-term quantum devices. We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network. By applying this algorithm to a resonance search in di-top final states, we find that this method has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method. The classifiers ability to be trained on small amounts of data indicates its benefits in data-driven classification problems

    Churn Identification and Prediction from a Large-Scale Telecommunication Dataset Using NLP

    Get PDF
    The identification of customer churn is a major issue for large telecom businesses. In order to manage the data of current customers as well as acquire and manage new customers, every day, a substantial volume of data gets generated. Therefore, it's crucial to identify the causes of client churn so that the appropriate steps can be taken to lower it. Numerous researchers have already discussed their efforts to combine static and dynamic approaches in order to reduce churn in big data sets, but these systems still have many issues when it comes to actually identifying churn. In this paper, we suggested two methods, the first of which is churn identification and using Natural Language Processing (NLP) methods and machine learning techniques, we make predictions based on a vast telecommunication data set. The NLP process involves data pre-processing, normalization, feature extraction, and feature selection. For feature extraction, we employ unique techniques like TF-IDF, Stanford NLP, and occurrence correlation methods, have been suggested. Throughout the lesson, a machine learning classification algorithm is used for training and testing. Finally, the system employs a variety of cross validation techniques and training and evaluating Machine learning algorithms. The experimental analysis shows the system's efficacy and accuracy

    Patient-Centric HetNets Powered by Machine Learning and Big Data Analytics for 6G Networks

    Get PDF
    Having a cognitive and self-optimizing network that proactively adapts not only to channel conditions, but also according to its users' needs can be one of the highest forthcoming priorities of future 6G Heterogeneous Networks (HetNets). In this paper, we introduce an interdisciplinary approach linking the concepts of e-healthcare, priority, big data analytics (BDA) and radio resource optimization in a multi-tier 5G network. We employ three machine learning (ML) algorithms, namely, naïve Bayesian (NB) classifier, logistic regression (LR), and decision tree (DT), working as an ensemble system to analyze historical medical records of stroke out-patients (OPs) and readings from body-attached internet-of-things (IoT) sensors to predict the likelihood of an imminent stroke. We convert the stroke likelihood into a risk factor functioning as a priority in a mixed integer linear programming (MILP) optimization model. Hence, the task is to optimally allocate physical resource blocks (PRBs) to HetNet users while prioritizing OPs by granting them high gain PRBs according to the severity of their medical state. Thus, empowering the OPs to send their critical data to their healthcare provider with minimized delay. To that end, two optimization approaches are proposed, a weighted sum rate maximization (WSRMax) approach and a proportional fairness (PF) approach. The proposed approaches increased the OPs' average signal to interference plus noise (SINR) by 57% and 95%, respectively. The WSRMax approach increased the system's total SINR to a level higher than that of the PF approach, nevertheless, the PF approach yielded higher SINRs for the OPs, better fairness and a lower margin of error

    Unsupervised Domain Adaptation for Multispectral Pedestrian Detection

    Get PDF
    Multimodal information (e.g., visible and thermal) can generate robust pedestrian detections to facilitate around-the-clock computer vision applications, such as autonomous driving and video surveillance. However, it still remains a crucial challenge to train a reliable detector working well in different multispectral pedestrian datasets without manual annotations. In this paper, we propose a novel unsupervised domain adaptation framework for multispectral pedestrian detection, by iteratively generating pseudo annotations and updating the parameters of our designed multispectral pedestrian detector on target domain. Pseudo annotations are generated using the detector trained on source domain, and then updated by fixing the parameters of detector and minimizing the cross entropy loss without back-propagation. Training labels are generated using the pseudo annotations by considering the characteristics of similarity and complementarity between well-aligned visible and infrared image pairs. The parameters of detector are updated using the generated labels by minimizing our defined multi-detection loss function with back-propagation. The optimal parameters of detector can be obtained after iteratively updating the pseudo annotations and parameters. Experimental results show that our proposed unsupervised multimodal domain adaptation method achieves significantly higher detection performance than the approach without domain adaptation, and is competitive with the supervised multispectral pedestrian detectors

    Sentiment Classification using Machine Learning: A Survey

    Get PDF
    The World Wide Web has brought a new way of expressing the reactions of people about any product, things, and topics, etc. The sentiment Analysis of written textual content on the web is one of the text mining areas used to find out sentiments in a given text. The process of sentiment analysis is a task of detecting, extracting and classifying critiques and sentiments expressed in texts. Twitter is also a medium with the huge amount of information wherein users can view the opinion of other users that labeled into different sentiment classes such as positive, negative, and neutral and are increasingly more developing as a key element in decision making. ?Till now, there are few extraordinary problems predominating in this research community, namely, sentiment classification, feature-based classification and dealing with negations. This paper presents a survey covering the strategies and techniques of sentiment classification and demanding situations appear within the area.

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing
    corecore