4,612 research outputs found

    Fusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection

    Get PDF
    Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to facilitate robust human target detection for around-the-clock applications (e.g. security surveillance and autonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can be utilized to significantly boost performance of pedestrian detection. A novel illumination-aware weighting mechanism is present to accurately depict illumination condition of a scene. Such illumination information is incorporated into two-stream deep convolutional neural networks to learn multispectral human-related features under different illumination conditions (daytime and nighttime). Moreover, we utilized illumination information together with multispectral data to generate more accurate semantic segmentation which are used to boost pedestrian detection accuracy. Putting all of the pieces together, we present a powerful framework for multispectral pedestrian detection based on multi-task learning of illumination-aware pedestrian detection and semantic segmentation. Our proposed method is trained end-to-end using a well-designed multi-task loss function and outperforms state-of-the-art approaches on KAIST multispectral pedestrian dataset

    What Can Help Pedestrian Detection?

    Full text link
    Aggregating extra features has been considered as an effective approach to boost traditional pedestrian detection methods. However, there is still a lack of studies on whether and how CNN-based pedestrian detectors can benefit from these extra features. The first contribution of this paper is exploring this issue by aggregating extra features into CNN-based pedestrian detection framework. Through extensive experiments, we evaluate the effects of different kinds of extra features quantitatively. Moreover, we propose a novel network architecture, namely HyperLearner, to jointly learn pedestrian detection as well as the given extra feature. By multi-task training, HyperLearner is able to utilize the information of given features and improve detection performance without extra inputs in inference. The experimental results on multiple pedestrian benchmarks validate the effectiveness of the proposed HyperLearner.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201
    • …
    corecore