100 research outputs found

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Amélioration et désagrégation des données GRACE et GRACE-FO pour l’estimation des variations de stock d’eau terrestre et d’eau souterraine à fine échelle

    Get PDF
    Abstract : Groundwater is an essential natural resource for domestic, industrial and agricultural uses worldwide. Unfortunately, climate change, excess withdrawal, population growth and other human impacts can affect its dynamics and availability. These excessive demands can lead to lower groundwater levels and depletion of aquifers, and potentially to increased water scarcity. Despite the abundance of lakes and rivers in many parts of Canada, the potential depletion of groundwater remains a major concern, particularly in the southern Prairie. Groundwater is traditionally monitored through in-situ piezometric wells, which are scarcely distributed in Canada and many parts of the world. Consequently, its quantities, distribution and availability are not well known, both spatially and temporally. Fortunately, the launch of the twin satellite systems of Gravity Recovery And Climate Experiment (GRACE) in 2002 and its successor, GRACE Follow-On in 2018 (GRACE-FO) opened up new ways to study groundwater changes. These platforms measure the variations of the Earth's gravity field, which in turn can be related to terrestrial water storage (TWS). The main objective of this thesis is to improve the estimation and spatial resolution of TWS and related groundwater storage changes (GWS), using GRACE and GRACE-FO data. This challenge was addressed through four specific objectives, where original approaches were developed in each case. The first objective was to understand and better take into account the uncertainties associated with the hydrological models (the Global Land Data Assimilation System (GLDAS), and the Water Global Assessment Prognosis hydrological model (WGHM)), generally used in the processing of GRACE or GRACE-FO data. The thesis proposes a new approach based on the Gauss-Markov model to estimate the optimal hydrological parameters from GLDAS, considering six different surface schemes. The Förstner estimator and the best quadratic unbiased estimator of the variance components were used with a least-squares method to estimate the optimal hydrological parameters and their errors. The comparison of the optimal TWS derived from GLDAS to the TWS derived from WGHM showed a very significant correlation of r = 0.91. The correlation obtained with GRACE was r = 0.71, which increased to r = 0.81 when the groundwater component was removed from GRACE. Compared to WGHM and GRACE, the optimal TWS calculated from GLDAS had much smaller errors (RMSE = 7 to 8.5 mm) than those obtained when individual surface schemes are considered (RMSE = 10 to 21 mm); demonstrating the performance of the proposed approach. The second specific objective was to understand regional variations in TWS and their uncertainties. The approach was applied over the Canadian landmass. To achieve the goal, the thesis proposes a new modeling of glacial isostatic adjustment uplift (GIA) in Canada. The comparison of the results of the proposed model and three other existing models with data from 149 very high precision GPS stations demonstrated its superiority in the region considered. The regional approach proposed was then used to extract TWS by correcting the effects of the GIA and leakage. The analyzes showed patterns of significant seasonal variations in TWS, with values ranging between -160 mm and 80 mm. Overall TWS showed a positive slope of temporal variations over the Canadian landmass (+ 6.6 mm/year) with GRACE and GRACE-FO combined. The slope reached up to 45 mm/year in the Hudson Bay region. The third objective was to extract GWS component using a comprehensive rigorous approach to reconstruct, refine and map the variations of GWS and its associated uncertainties. The approach used the methods proposed in the two previous objectives. Moreover, a new filtering approach called Gaussian-Han-Fan (GHF) was developed and integrated into the process in order to have a more robust procedure for extracting information from GRACE and GRACE-FO data. The performance and merits of the proposed filter compared to previous filters were analyzed. Then, the groundwater signal was reconstructed by taking into account all the other components, including surface water variations (estimated using satellite altimetry data). The results showed that the average variations of GWS are between -200 mm and +230 mm in the Canadian Prairies. The maximum and minimum GWS trends were found around the Hudson Bay region (approximately 55 mm/year) and southern Prairies (approximately -20 mm/year), respectively. The error on GWS was around 10% (about 19 mm). The estimated GWS changes were validated using the data from 116 in-situ wells. This validation showed a significant level of correlation (r > |0.70|, P |0.90|, P |0,70|, P |0,90|, P < 10-4, RMSE < 30 mm). Enfin, le dernier objectif consistait à améliorer la résolution spatiale des résultats extraits des données GRACE de 1° à 0.25°. Ainsi, une nouvelle approche basée sur l'ajustement des conditions a d’abord été proposée pour estimer les paramètres hydrologiques optimaux et leurs erreurs. Elle est légèrement différente de la méthode proposée dans le premier objectif. Ensuite, les corrections requises pour extraire les anomalies de TWS et ses incertitudes de manière rigoureuse ont été effectuées suivant la méthodologie présentée à l’objectif 3. Par la suite une nouvelle méthode basée sur la combinaison spectrale-spatiale a été développée pour dériver les anomalies de TWS à échelle réduite (0.25°), en combinant de manière optimale les modèles GRACE et les paramètres hydrologiques. Enfin, les anomalies d’eau souterraines ont été dérivées en utilisant les anomalies de TWS estimées. Les validations ont été faites à partir des données de 75 puits en aquifère non confiné en Alberta. Elles démontrent le potentiel de l’approche proposée avec une corrélation très significative de = 0.80 et un RMSE de 11 mm. Ainsi, la recherche proposée dans la thèse a permis de faire des avancées importantes dans l’extraction d’information sur le stockage total d’eau et les eaux souterraines à partir des données des satellites gravimétriques GRACE et GRACE-FO. Elle propose et valide plusieurs nouvelles approches originales en s’appuyant sur des données in-situ. Elle ouvre également plusieurs nouvelles avenues de recherche, qui permettront de faciliter une utilisation plus opérationnelle de ces types de données à l’échelle régionale, voire locale

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Modeling of Species Distribution and Biodiversity in Forests

    Get PDF
    Understanding the patterns of biodiversity and their relationship with environmental gradients is a key issue in ecological research and conservation in forests. Several environmental factors can influence species distributions in these complex ecosystems. It is therefore important to distinguish the effects of natural factors from the anthropogenic ones (e.g., environmental pollution, climate change, and forest management) by adopting reliable models able to predict future scenarios of species distribution. In the last 20 years, the use of statistical tools, such as Species Distribution Models (SDM) or Ecological Niche Models (ENM), allowed researchers to make great strides in the subject, with hundreds of scientific research works in this field. This book collects several research articles where these methodological approaches are the starting point to deepen the knowledge in many timely and emerging topics in forest ecosystems around the world, from Eurasia to America

    Protection Strategy against Spruce Budworm

    Get PDF
    Spruce budworm (Choristoneura fumiferana (Clem.)) outbreaks are a dominant natural disturbance in the forests of Canada and northeastern USA. Widespread, severe defoliation by this native insect results in large-scale mortality and growth reductions of spruce (Picea sp.) and balsam fir (Abies balsamea (L.) Mill.) forests, and largely determines future age–class structure and productivity. The last major spruce budworm outbreak defoliated over 58 million hectares in the 1970s–1980s, and caused 32–43 million m3/year of timber volume losses from 1978 to 1987, in Canada. Management to deal with spruce budworm outbreaks has emphasized forest protection, spraying registered insecticides to prevent defoliation and keep trees alive. Other tactics can include salvage harvesting, altering harvest schedules to remove the most susceptible stands, or reducing future susceptibility by planting or thinning. Chemical insecticides are no longer used, and protection strategies use biological insecticides Bacillus thuringiensis (B.t.) or tebufenozide, a specific insect growth regulator. Over the last five years, a $30 million research project has tested another possible management tactic, termed an ‘early intervention strategy’, aimed at area-wide management of spruce budworm populations. This includes intensive monitoring to detect ‘hot spots’ of rising budworm populations before defoliation occurs, targeted insecticide treatment to prevent spread, and detailed research into target and non-target insect effects. The objective of this Special Issue is to compile the most recent research on protection strategies against spruce budworm. A series of papers will describe results and prospects for the use of an early intervention strategy in spruce budworm and other insect management

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    • …
    corecore