8,359 research outputs found

    The (related-key) impossible boomerang attack and its application to the AES block cipher

    Get PDF
    The Advanced Encryption Standard (AES) is a 128-bit block cipher with a user key of 128, 192 or 256 bits, released by NIST in 2001 as the next-generation data encryption standard for use in the USA. It was adopted as an ISO international standard in 2005. Impossible differential cryptanalysis and the boomerang attack are powerful variants of differential cryptanalysis for analysing the security of a block cipher. In this paper, building on the notions of impossible differential cryptanalysis and the boomerang attack, we propose a new cryptanalytic technique, which we call the impossible boomerang attack, and then describe an extension of this attack which applies in a related-key attack scenario. Finally, we apply the impossible boomerang attack to break 6-round AES with 128 key bits and 7-round AES with 192/256 key bits, and using two related keys we apply the related-key impossible boomerang attack to break 8-round AES with 192 key bits and 9-round AES with 256 key bits. In the two-key related-key attack scenario, our results, which were the first to achieve this amount of attacked rounds, match the best currently known results for AES with 192/256 key bits in terms of the numbers of attacked rounds. The (related-key) impossible boomerang attack is a general cryptanalytic technique, and can potentially be used to cryptanalyse other block ciphers

    Impossible Boomerang Attack for Block Cipher Structures

    Get PDF
    Impossible boomerang attack \cite{lu} (IBA) is a new variant of differential cryptanalysis against block ciphers. Evident from its name, it combines the ideas of both impossible differential cryptanalysis and boomerang attack. Though such an attack might not be the best attack available, its complexity is still less than that of the exhaustive search. In impossible boomerang attack, impossible boomerang distinguishers are used to retrieve some of the subkeys. Thus the security of a block cipher against IBA can be evaluated by impossible boomerang distinguishers. In this paper, we study the impossible boomerang distinguishers for block cipher structures whose round functions are bijective. Inspired by the U\mathcal{U}-method in \cite{kim}, we provide an algorithm to compute the maximum length of impossible boomerang distinguishers for general block cipher structures, and apply the algorithm to known block cipher structures such as Nyberg\u27s generalized Feistel network, a generalized CAST256-like structure, a generalized MARS-like structure, a generalized RC6-like structure, etc

    On the Boomerang Uniformity of some Permutation Polynomials

    Get PDF
    The boomerang attack, introduced by Wagner in 1999, is a cryptanalysis technique against block ciphers based on differential cryptanalysis. In particular it takes into consideration two differentials, one for the upper part of the cipher and one for the lower part, and it exploits the dependency of these two differentials. At Eurocrypt’18, Cid et al. introduced a new tool, called the Boomerang Connectivity Table (BCT), that permits to simplify this analysis. Next, Boura and Canteaut introduced an important parameter for cryptographic S-boxes called boomerang uniformity, that is the maximum value in the BCT. Very recently, the boomerang uniformity of some classes of permutations (in particular quadratic functions) have been studied by Li, Qu, Sun and Li, and by Mesnager, Tang and Xiong. In this paper we further study the boomerang uniformity of some non-quadratic differentially 4-uniform functions. In particular, we consider the case of the Bracken-Leander cubic function and three classes of 4-uniform functions constructed by Li, Wang and Yu, obtained from modifying the inverse functions.publishedVersio

    Boomerang Switch in Multiple Rounds. Application to AES Variants and Deoxys

    Get PDF
    The boomerang attack is a cryptanalysis technique that allows an attacker to concatenate two short differential characteristics. Several research results (ladder switch, S-box switch, sandwich attack, Boomerang Connectivity Table (BCT), ...) showed that the dependency between these two characteristics at the switching round can have a significant impact on the complexity of the attack, or even potentially invalidate it. In this paper, we revisit the issue of boomerang switching effect, and exploit it in the case where multiple rounds are involved. To support our analysis, we propose a tool called Boomerang Difference Table (BDT), which can be seen as an improvement of the BCT and allows a systematic evaluation of the boomerang switch through multiple rounds. In order to illustrate the power of this technique, we propose a new related-key attack on 10-round AES-256 which requires only 2 simple related-keys and 275 computations. This is a much more realistic scenario than the state-of-the-art 10-round AES-256 attacks, where subkey oracles, or several related-keys and high computational power is needed. Furthermore, we also provide improved attacks against full AES-192 and reduced-round Deoxys

    Switching the Top Slice of the Sandwich with Extra Filling Yields a Stronger Boomerang for NLFSR-based Block Ciphers

    Get PDF
    The Boomerang attack was one of the first attempts to visualize a cipher (EE) as a composition of two sub-ciphers (E0∘E1E_0\circ E_1) to devise and exploit two high-probability (say p,qp,q) shorter trails instead of relying on a single low probability (say ss) longer trail for differential cryptanalysis. The attack generally works whenever p2⋅q2>sp^2 \cdot q^2 > s. However, it was later succeeded by the so-called ``sandwich attack\u27\u27 which essentially splits the cipher in three parts E2˘70∘Em∘E2˘71E\u27_0\circ E_m \circ E\u27_1 adding an additional middle layer (EmE_m) with distinguishing probability of p2⋅r⋅q2p^2\cdot r\cdot q^2. It is primarily the generalization of a body of research in this direction that investigate what is referred to as the switching activity and capture the dependencies and potential incompatibilities of the layers that the middle layer separates. This work revisits the philosophy of the sandwich attack over multiple rounds for NLFSR-based block ciphers and introduces a new method to find high probability boomerang distinguishers. The approach formalizes boomerang attacks using only ladder, And switches. The cipher is treated as E=Em∘E1E = E_m \circ E_1, a specialized form of a sandwich attack which we called as the ``open-sandwich attack\u27\u27. The distinguishing probability for this attack configuration is r⋅q2r \cdot q^2. Using this innovative approach, the study successfully identifies a deterministic boomerang distinguisher for the keyed permutation of the TinyJambu cipher over 320 rounds. Additionally, a 640-round boomerang with a probability of 2−222^{-22} is presented with 95% success rate. In the related-key setting, we unveil full-round boomerangs with probabilities of 2−192^{-19}, 2−182^{-18}, and 2−122^{-12} for all three variants, demonstrating a 99% success rate. Similarly, for Katan-32, a more effective related-key boomerang spanning 140 rounds with a probability of 2−152^{-15} is uncovered with 70% success rate. Further, in the single-key setting, a 84-round boomerang with probability 2−302^{-30} found with success rate of 60%. This research deepens the understanding of boomerang attacks, enhancing the toolkit for cryptanalysts to develop efficient and impactful attacks on NLFSR-based block ciphers

    Structure Evaluation of AES-like Ciphers against Mixture Differential Cryptanalysis

    Get PDF
    In ASIACRYPT 2017, Rønjom et al. analyzed AES with yoyo attack. Inspired by their 4-round AES distinguisher, Grassi proposed the mixture differential cryptanalysis as well as a key recovery attack on 5-round AES, which was shown to be better than the classical square attack in computation complexity. After that, Bardeh et al. combined the exchange attack with the 4-round mixture differential distinguisher of AES, leading to the first secret-key chosen plaintext distinguisher for 6-round AES. Unlike the attack on 5-round AES, the result of 6-round key-recovery attack on AES has extremely large complexity, which implies the weakness of mixture difference to a certain extent. Our work aims at evaluating the security of AES-like ciphers against mixture differential cryptanalysis. We propose a new structure called a boomerang struncture and illustrate that a differential distinguisher of a boomerang struncture just corresponds to a mixture differential distinguisher for AES-like ciphers. Based on the boomerang structure, it is shown that the mixture differential cryptanalysis is not suitable to be applied to AES-like ciphers with high round number. In specific, we associate the primitive index with our framework built on the boomerang structure and give the upper bound for the length of mixture differentials with probability 1 on AES-like ciphers. It can be directly deduced from our framework that there is no mixture differential distinguisher for 6-round AES

    The Retracing Boomerang Attack

    Get PDF
    Boomerang attacks are extensions of differential attacks, that make it possible to combine two unrelated differential properties of the first and second part of a cryptosystem with probabilities pp and qq into a new differential-like property of the whole cryptosystem with probability p2q2p^2q^2 (since each one of the properties has to be satisfied twice). In this paper we describe a new version of boomerang attacks which uses the counterintuitive idea of throwing out most of the data (including potentially good cases) in order to force equalities between certain values on the ciphertext side. This creates a correlation between the four probabilistic events, which increases the probability of the combined property to p2qp^2q and increases the signal to noise ratio of the resultant distinguisher. We call this variant a retracing boomerang attack since we make sure that the boomerang we throw follows the same path on its forward and backward directions. To demonstrate the power of the new technique, we apply it to the case of 5-round AES. This version of AES was repeatedly attacked by a large variety of techniques, but for twenty years its complexity had remained stuck at 2322^{32}. At Crypto\u2718 it was finally reduced to 2242^{24} (for full key recovery), and with our new technique we can further reduce the complexity of full key recovery to the surprisingly low value of 216.52^{16.5} (i.e., only 90,000 encryption/decryption operations are required for a full key recovery on half the rounds of AES). In addition to improving previous attacks, our new technique unveils a hidden relationship between boomerang attacks and two other cryptanalytic techniques, the yoyo game and the recently introduced mixture differentials

    Related-Key Boomerang Attack on Block Cipher SQUARE

    Get PDF
    Square is 8-round SPN structure block cipher and its round function and key schedule have been slightly modified to design building blocks of Rijndael. Key schedule of Square is simple and efficient but fully affie, so we apply a related-key attack on it. We find a 3-round related-key differential trail with probability 2^28, which have zero differences both on its input and output states, and this trail is called the local collision in [5]. By extending of this related-key differential, we construct a 7-round related-key boomerang distinguisher and successful attack on full round Square. The best attack on Square have ever been known is the square attack on 6-round reduced variant of Square. In this paper, we present a key recovery attack on the full round of Square using a related-key boomerang distinguisher. We construct a 7-round related-key boomerang distinguisher with probability 2^119 by finding local collision, and calculate its probability using ladder switch and local amplification techniques. As a result, one round on top of distinguisher is added to construct a full round attack on Square which recovers 16-bit key information with 2^36 encryptions and 2^123 data
    • …
    corecore