137 research outputs found

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001U.S. Air Force - Office of Scientific Research Contract AFOSR 86-0164BDuPont CorporationNational Science Foundation Grant MIP 88-14612U.S. Navy - Office of Naval Research Contract N00014-87-K-0825American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Custom Integrated Circuits

    Get PDF
    Contains reports on twelve research projects.Analog Devices, Inc.International Business Machines, Inc.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAAL03-89-C-0001)U.S. Air Force - Office of Scientific Research (Grant AFOSR 86-0164)Rockwell International CorporationOKI Semiconductor, Inc.U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Charles Stark Draper LaboratoryNational Science Foundation (Grant MIP 84-07285)National Science Foundation (Grant MIP 87-14969)Battelle LaboratoriesNational Science Foundation (Grant MIP 88-14612)DuPont CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research (Contract N00014-87-K-0825)American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation (Grant MIP-88-58764

    Reliability Driven Synthesis of Sequential Circuits

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratorySemiconductor Research Corporation / SRC 95-DP-109Joint Services Electronics Program / N00014-90-J-127

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Principles of logic design

    Get PDF
    This study involves logic design and switching theory, in particular their practical application to the logic design and understanding of digital machines. Digital machines, of course, play an extremely important role in that large class of machines known as digital computers. But they also play an important role in many other kinds of practical devices important in the design of communications systems, digital control systems, counters, registers, digital meters, and so on. The basic content of switching theory is very simple. It embodies that body of machines and machine behavior that can be realized with "switches", things that are either "on" or "off", and nothing, really, could be much simpler than that. Of course the world is really comprised of very many complex structures which are really composed of exceedingly simple lesser structures, so that we really shouldn't be too surprised that even though the elements of switching theory are quite simple, their consequences are not necessarily so. The goals of our study are several, and include at least the following: 1) to develop some understanding and capability in using the techniques, design procedures, and models that have been developed for understanding and designing digital networks; 2) to explore in some modest detail the kinds of questions with which logic designers and practitioners concern themselves; 3) to develop an appreciation for the tremendous variation possible in digital design requirements and specifications, i. e,, for the complexity of the 'finite' digital problem, and hence an understanding of the need for systematic design techniques by which to attack such problems; 4) to gain some practice with the fundamental tools and techniques of logic design I so that the reader can adapt the techniques to the "new" problem presented by his own particular design constraints; and 5) to provide an introduction to the literature so that the discerning student can, in the future, dip into the ever growing literature in the field, and find it to some degree comprehensible, and advantageous to use

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Low Power Design Techniques for Digital Logic Circuits.

    Get PDF
    With the rapid increase in the density and the size of chips and systems, area and power dissipationbecome critical concern in Very Large Scale Integrated (VLSI) circuit design. Low powerdesign techniques are essential for today's VLSI industry. The history of symbolic logic and sometypical techniques for finite state machine (FSM) logic synthesis are reviewed.The state assignment is used to optimize area and power dissipation for FSMs. Two costfunctions, targeting area and power, are presented. The Genetic Algorithm (GA) is used to searchfor a good state assignment to minimize the cost functions. The algorithm has been implementedin C. The program can produce better results than NOVA, which is integrated into SIS by DCBerkeley, and other publications both in area and power tested by MCNC benchmarks.Flip-flops are the core components of FSMs. The reduction of power dissipation from flip-flopscan save power for digital systems significantly. Three new kinds of flip-flops, called differentialCMOS single edge-triggered flip-flop with clock gating, double edge-triggered and multiple valuedflip-flops employing multiple valued clocks, are proposed. All circuits are simulated using PSpice.Most researchers have focused on developing low-power techniques in AND/OR or NAND& NOR based circuits. The low power techniques for AND /XOR based circuits are still intheir early stage of development. To implement a complex function involving many inputs,a form of decomposition into smaller subfunctions is required such that the subfunctions fitinto the primitive elements to be used in the implementation. Best polarity based XOR gatedecomposition technique has been developed, which targets low power using Huffman algorithm.Compared to the published results, the proposed method shows considerable improvement inpower dissipation. Further, Boolean functions can be expressed by Fixed Polarity Reed-Muller(FPRM) forms. Based on polarity transformation, an algorithm is developed and implementedin C language which can find the best polarity for power and area optimization. Benchmarkexamples of up to 21 inputs run on a personal computer are given

    Encoding problems in logic synthesis

    Get PDF
    • …
    corecore