11,052 research outputs found

    On the Succinctness of Query Rewriting over OWL 2 QL Ontologies with Shallow Chases

    Full text link
    We investigate the size of first-order rewritings of conjunctive queries over OWL 2 QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. Conjunctive queries over ontologies of depth 1 have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can only be of superpolynomial size. Positive existential and nonrecursive datalog rewritings of queries over ontologies of depth 2 suffer an exponential blowup in the worst case, while first-order rewritings are superpolynomial unless NP⊆P/poly\text{NP} \subseteq \text{P}/\text{poly}. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and observe that the query entailment problem for such queries is fixed-parameter tractable

    Evaluating Datalog via Tree Automata and Cycluits

    Full text link
    We investigate parameterizations of both database instances and queries that make query evaluation fixed-parameter tractable in combined complexity. We show that clique-frontier-guarded Datalog with stratified negation (CFG-Datalog) enjoys bilinear-time evaluation on structures of bounded treewidth for programs of bounded rule size. Such programs capture in particular conjunctive queries with simplicial decompositions of bounded width, guarded negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result is shown by translating to alternating two-way automata, whose semantics is defined via cyclic provenance circuits (cycluits) that can be tractably evaluated.Comment: 56 pages, 63 references. Journal version of "Combined Tractability of Query Evaluation via Tree Automata and Cycluits (Extended Version)" at arXiv:1612.04203. Up to the stylesheet, page/environment numbering, and possible minor publisher-induced changes, this is the exact content of the journal paper that will appear in Theory of Computing Systems. Update wrt version 1: latest reviewer feedbac

    A Backward Analysis for Constraint Logic Programs

    Get PDF
    One recurring problem in program development is that of understanding how to re-use code developed by a third party. In the context of (constraint) logic programming, part of this problem reduces to figuring out how to query a program. If the logic program does not come with any documentation, then the programmer is forced to either experiment with queries in an ad hoc fashion or trace the control-flow of the program (backward) to infer the modes in which a predicate must be called so as to avoid an instantiation error. This paper presents an abstract interpretation scheme that automates the latter technique. The analysis presented in this paper can infer moding properties which if satisfied by the initial query, come with the guarantee that the program and query can never generate any moding or instantiation errors. Other applications of the analysis are discussed. The paper explains how abstract domains with certain computational properties (they condense) can be used to trace control-flow backward (right-to-left) to infer useful properties of initial queries. A correctness argument is presented and an implementation is reported.Comment: 32 page

    Securing Databases from Probabilistic Inference

    Full text link
    Databases can leak confidential information when users combine query results with probabilistic data dependencies and prior knowledge. Current research offers mechanisms that either handle a limited class of dependencies or lack tractable enforcement algorithms. We propose a foundation for Database Inference Control based on ProbLog, a probabilistic logic programming language. We leverage this foundation to develop Angerona, a provably secure enforcement mechanism that prevents information leakage in the presence of probabilistic dependencies. We then provide a tractable inference algorithm for a practically relevant fragment of ProbLog. We empirically evaluate Angerona's performance showing that it scales to relevant security-critical problems.Comment: A short version of this paper has been accepted at the 30th IEEE Computer Security Foundations Symposium (CSF 2017

    Efficient Parallel Path Checking for Linear-Time Temporal Logic With Past and Bounds

    Full text link
    Path checking, the special case of the model checking problem where the model under consideration is a single path, plays an important role in monitoring, testing, and verification. We prove that for linear-time temporal logic (LTL), path checking can be efficiently parallelized. In addition to the core logic, we consider the extensions of LTL with bounded-future (BLTL) and past-time (LTL+Past) operators. Even though both extensions improve the succinctness of the logic exponentially, path checking remains efficiently parallelizable: Our algorithm for LTL, LTL+Past, and BLTL+Past is in AC^1(logDCFL) \subseteq NC

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop
    • …
    corecore