398 research outputs found

    Post-processing of association rules.

    Get PDF
    In this paper, we situate and motivate the need for a post-processing phase to the association rule mining algorithm when plugged into the knowledge discovery in databases process. Major research effort has already been devoted to optimising the initially proposed mining algorithms. When it comes to effectively extrapolating the most interesting knowledge nuggets from the standard output of these algorithms, one is faced with an extreme challenge, since it is not uncommon to be confronted with a vast amount of association rules after running the algorithms. The sheer multitude of generated rules often clouds the perception of the interpreters. Rightful assessment of the usefulness of the generated output introduces the need to effectively deal with different forms of data redundancy and data being plainly uninteresting. In order to do so, we will give a tentative overview of some of the main post-processing tasks, taking into account the efforts that have already been reported in the literature.

    Towards a semantic and statistical selection of association rules

    Full text link
    The increasing growth of databases raises an urgent need for more accurate methods to better understand the stored data. In this scope, association rules were extensively used for the analysis and the comprehension of huge amounts of data. However, the number of generated rules is too large to be efficiently analyzed and explored in any further process. Association rules selection is a classical topic to address this issue, yet, new innovated approaches are required in order to provide help to decision makers. Hence, many interesting- ness measures have been defined to statistically evaluate and filter the association rules. However, these measures present two major problems. On the one hand, they do not allow eliminating irrelevant rules, on the other hand, their abun- dance leads to the heterogeneity of the evaluation results which leads to confusion in decision making. In this paper, we propose a two-winged approach to select statistically in- teresting and semantically incomparable rules. Our statis- tical selection helps discovering interesting association rules without favoring or excluding any measure. The semantic comparability helps to decide if the considered association rules are semantically related i.e comparable. The outcomes of our experiments on real datasets show promising results in terms of reduction in the number of rules

    Semantics-based classification of rule interestingness measures

    Get PDF
    Assessing rules with interestingness measures is the cornerstone of successful applications of association rule discovery. However, as numerous measures may be found in the literature, choosing the measures to be applied for a given application is a difficult task. In this chapter, the authors present a novel and useful classification of interestingness measures according to three criteria: the subject, the scope, and the nature of the measure. These criteria seem essential to grasp the meaning of the measures, and therefore to help the user to choose the ones (s)he wants to apply. Moreover, the classification allows one to compare the rules to closely related concepts such as similarities, implications, and equivalences. Finally, the classification shows that some interesting combinations of the criteria are not satisfied by any index

    Towards Role Based Hypothesis Evaluation for Health Data Mining

    Get PDF
    Data mining researchers have long been concerned with the application of tools to facilitate and improve data analysis on large, complex data sets. The current challenge is to make data mining and knowledge discovery systems applicable to a wider range of domains, among them health. Early work was performed over transactional, retail based data sets, but the attraction of finding previously unknown knowledge from the ever increasing amounts of data collected from the health domain is an emerging area of interest and specialisation. The problem is finding a solution that is suitably flexible to allow for generalised application whilst being specific enough to provide functionality that caters for the nuances of each role within the domain. The need for a more granular approach to problem solving in other areas of information technology has resulted in the use of role based solutions. This paper discusses the progress to date in developing a role oriented solution to the problem of providing for the diverse requirements of health domain data miners and defining the foundation for determining what constitutes an interesting discovery in an area as complex as health

    Knowledge-based Systems and Interestingness Measures: Analysis with Clinical Datasets

    Get PDF
    Knowledge mined from clinical data can be used for medical diagnosis and prognosis. By improving the quality of knowledge base, the efficiency of prediction of a knowledge-based system can be enhanced. Designing accurate and precise clinical decision support systems, which use the mined knowledge, is still a broad area of research. This work analyses the variation in classification accuracy for such knowledge-based systems using different rule lists. The purpose of this work is not to improve the prediction accuracy of a decision support system, but analyze the factors that influence the efficiency and design of the knowledge base in a rule-based decision support system. Three benchmark medical datasets are used. Rules are extracted using a supervised machine learning algorithm (PART). Each rule in the ruleset is validated using nine frequently used rule interestingness measures. After calculating the measure values, the rule lists are used for performance evaluation. Experimental results show variation in classification accuracy for different rule lists. Confidence and Laplace measures yield relatively superior accuracy: 81.188% for heart disease dataset and 78.255% for diabetes dataset. The accuracy of the knowledge-based prediction system is predominantly dependent on the organization of the ruleset. Rule length needs to be considered when deciding the rule ordering. Subset of a rule, or combination of rule elements, may form new rules and sometimes be a member of the rule list. Redundant rules should be eliminated. Prior knowledge about the domain will enable knowledge engineers to design a better knowledge base

    An Efficient Rule-Hiding Method for Privacy Preserving in Transactional Databases

    Get PDF
    One of the obstacles in using data mining techniques such as association rules is the risk of leakage of sensitive data after the data is released to the public. Therefore, a trade-off between the data privacy and data mining is of a great importance and must be managed carefully. In this study an efficient algorithm is introduced for preserving the privacy of association rules according to distortion-based method, in which the sensitive association rules are hidden through deletion and reinsertion of items in the database. In this algorithm, in order to reduce the side effects on non-sensitive rules, the item correlation between sensitive and non-sensitive rules is calculated and the item with the minimum influence in non-sensitive rules is selected as the victim item. To reduce the distortion degree on data and preservation of data quality, transactions with highest number of sensitive items are selected for modification. The results show that the proposed algorithm has a better performance in the non-dense real database having less side effects and less data loss compared to its performance in dense real database. Further the results are far better in synthetic databases in compared to real databases

    Unsupervised Machine Learning and Data Mining Procedures Reveal Short Term, Climate Driven Patterns Linking Physico-Chemical Features and Zooplankton Diversity in Small Ponds

    Get PDF
    Machine Learning (ML) is an increasingly accessible discipline in computer science that develops dynamic algorithms capable of data-driven decisions and whose use in ecology is growing. Fuzzy sets are suitable descriptors of ecological communities as compared to other standard algorithms and allow the description of decisions that include elements of uncertainty and vagueness. However, fuzzy sets are scarcely applied in ecology. In this work, an unsupervised machine learning algorithm, fuzzy c-means and association rules mining were applied to assess the factors influencing the assemblage composition and distribution patterns of 12 zooplankton taxa in 24 shallow ponds in northern Italy. The fuzzy c-means algorithm was implemented to classify the ponds in terms of taxa they support, and to identify the influence of chemical and physical environmental features on the assemblage patterns. Data retrieved during 2014 and 2015 were compared, taking into account that 2014 late spring and summer air temperatures were much lower than historical records, whereas 2015 mean monthly air temperatures were much warmer than historical averages. In both years, fuzzy c-means show a strong clustering of ponds in two groups, contrasting sites characterized by different physico-chemical and biological features. Climatic anomalies, affecting the temperature regime, together with the main water supply to shallow ponds (e.g., surface runoff vs. groundwater) represent disturbance factors producing large interannual differences in the chemistry, biology and short-term dynamic of small aquatic ecosystems. Unsupervised machine learning algorithms and fuzzy sets may help in catching such apparently erratic differences

    Mining Characteristic Patterns for Comparative Music Corpus Analysis

    Get PDF
    A core issue of computational pattern mining is the identification of interesting patterns. When mining music corpora organized into classes of songs, patterns may be of interest because they are characteristic, describing prevalent properties of classes, or because they are discriminant, capturing distinctive properties of classes. Existing work in computational music corpus analysis has focused on discovering discriminant patterns. This paper studies characteristic patterns, investigating the behavior of different pattern interestingness measures in balancing coverage and discriminability of classes in top k pattern mining and in individual top ranked patterns. Characteristic pattern mining is applied to the collection of Native American music by Frances Densmore, and the discovered patterns are shown to be supported by Densmore’s own analyses
    corecore