11,342 research outputs found

    Boolean dimension and tree-width

    Full text link
    The dimension is a key measure of complexity of partially ordered sets. Small dimension allows succinct encoding. Indeed if PP has dimension dd, then to know whether xā‰¤yx \leq y in PP it is enough to check whether xā‰¤yx\leq y in each of the dd linear extensions of a witnessing realizer. Focusing on the encoding aspect Ne\v{s}et\v{r}il and Pudl\'{a}k defined a more expressive version of dimension. A poset PP has boolean dimension at most dd if it is possible to decide whether xā‰¤yx \leq y in PP by looking at the relative position of xx and yy in only dd permutations of the elements of PP. We prove that posets with cover graphs of bounded tree-width have bounded boolean dimension. This stays in contrast with the fact that there are posets with cover graphs of tree-width three and arbitrarily large dimension. This result might be a step towards a resolution of the long-standing open problem: Do planar posets have bounded boolean dimension?Comment: one more reference added; paper revised along the suggestion of three reviewer

    Local dimension is unbounded for planar posets

    Get PDF
    In 1981, Kelly showed that planar posets can have arbitrarily large dimension. However, the posets in Kelly's example have bounded Boolean dimension and bounded local dimension, leading naturally to the questions as to whether either Boolean dimension or local dimension is bounded for the class of planar posets. The question for Boolean dimension was first posed by NeÅ”etřil and PudlĆ”k in 1989 and remains unanswered today. The concept of local dimension is quite new, introduced in 2016 by Ueckerdt. Since that time, researchers have obtained many interesting results concerning Boolean dimension and local dimension, contrasting these parameters with the classic Dushnik-Miller concept of dimension, and establishing links between both parameters and structural graph theory, path-width and tree-width in particular. Here we show that local dimension is not bounded on the class of planar posets. Our proof also shows that the local dimension of a poset is not bounded in terms of the maximum local dimension of its blocks, and it provides an alternative proof of the fact that the local dimension of a poset cannot be bounded in terms of the tree-width of its cover graph, independent of its height

    Scope-bounded multistack pushdown systems: fixed-point, sequentialization, and tree-width

    Get PDF
    We present a novel fixed-point algorithm to solve reachability of multi-stack pushdown systems restricted to runs of bounded-scope. The followed approach is compositional, in the sense that the runs of the system are summarized by bounded-size interfaces. Moreover, it is suitable for a direct implementation and can be exploited to prove two new results. We give a sequentialization for this class of systems, i.e., for each such multi-stack pushdown system we construct an equivalent single-stack pushdown system that faithfully simulates the behaviour of each thread. We prove that the behaviour graphs (multiply nested words) for these systems have bounded three-width, and thus a number of decidability results can be derived from Courcelleā€™s theorem

    Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review

    Get PDF
    The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage
    • ā€¦
    corecore