37 research outputs found

    Boolean complexes for Ferrers graphs

    Full text link
    In this paper we provide an explicit formula for calculating the boolean number of a Ferrers graph. By previous work of the last two authors, this determines the homotopy type of the boolean complex of the graph. Specializing to staircase shapes, we show that the boolean numbers of the associated Ferrers graphs are the Genocchi numbers of the second kind, and obtain a relation between the Legendre-Stirling numbers and the Genocchi numbers of the second kind. In another application, we compute the boolean number of a complete bipartite graph, corresponding to a rectangular Ferrers shape, which is expressed in terms of the Stirling numbers of the second kind. Finally, we analyze the complexity of calculating the boolean number of a Ferrers graph using these results and show that it is a significant improvement over calculating by edge recursion.Comment: final version, to appear in the The Australasian Journal of Combinatoric

    The uniform face ideals of a simplicial complex

    Full text link
    We define the uniform face ideal of a simplicial complex with respect to an ordered proper vertex colouring of the complex. This ideal is a monomial ideal which is generally not squarefree. We show that such a monomial ideal has a linear resolution, as do all of its powers, if and only if the colouring satisfies a certain nesting property. In the case when the colouring is nested, we give a minimal cellular resolution supported on a cubical complex. From this, we give the graded Betti numbers in terms of the face-vector of the underlying simplicial complex. Moreover, we explicitly describe the Boij-S\"oderberg decompositions of both the ideal and its quotient. We also give explicit formul\ae\ for the codimension, Krull dimension, multiplicity, projective dimension, depth, and regularity. Further still, we describe the associated primes, and we show that they are persistent.Comment: 34 pages, 8 figure

    Homotopy Type of the Boolean Complex of a Coxeter System

    Get PDF
    In any Coxeter group, the set of elements whose principal order ideals are boolean forms a simplicial poset under the Bruhat order. This simplicial poset defines a cell complex, called the boolean complex. In this paper it is shown that, for any Coxeter system of rank n, the boolean complex is homotopy equivalent to a wedge of (n-1)-dimensional spheres. The number of such spheres can be computed recursively from the unlabeled Coxeter graph, and defines a new graph invariant called the boolean number. Specific calculations of the boolean number are given for all finite and affine irreducible Coxeter systems, as well as for systems with graphs that are disconnected, complete, or stars. One implication of these results is that the boolean complex is contractible if and only if a generator of the Coxeter system is in the center of the group. of these results is that the boolean complex is contractible if and only if a generator of the Coxeter system is in the center of the group.Comment: final version, to appear in Advances in Mathematic

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    COMBINATORIAL ASPECTS OF EXCEDANCES AND THE FROBENIUS COMPLEX

    Get PDF
    In this dissertation we study the excedance permutation statistic. We start by extending the classical excedance statistic of the symmetric group to the affine symmetric group eSn and determine the generating function of its distribution. The proof involves enumerating lattice points in a skew version of the root polytope of type A. Next we study the excedance set statistic on the symmetric group by defining a related algebra which we call the excedance algebra. A combinatorial interpretation of expansions from this algebra is provided. The second half of this dissertation deals with the topology of the Frobenius complex, that is the order complex of a poset whose definition was motivated by the classical Frobenius problem. We determine the homotopy type of the Frobenius complex in certain cases using discrete Morse theory. We end with an enumeration of Q-factorial posets. Open questions and directions for future research are located at the end of each chapter
    corecore