39,548 research outputs found

    A Lower Bound of 2n2^n Conditional Branches for Boolean Satisfiability on Post Machines

    Full text link
    We establish a lower bound of 2n2^n conditional branches for deciding the satisfiability of the conjunction of any two Boolean formulas from a set called a full representation of Boolean functions of nn variables - a set containing a Boolean formula to represent each Boolean function of nn variables. The contradiction proof first assumes that there exists a Post machine (Post's Formulation 1) that correctly decides the satisfiability of the conjunction of any two Boolean formulas from such a set by following an execution path that includes fewer than 2n2^n conditional branches. By using multiple runs of this Post machine, with one run for each Boolean function of nn variables, the proof derives a contradiction by showing that this Post machine is unable to correctly decide the satisfiability of the conjunction of at least one pair of Boolean formulas from a full representation of nn-variable Boolean functions if the machine executes fewer than 2n2^n conditional branches. This lower bound of 2n2^n conditional branches holds for any full representation of Boolean functions of nn variables, even if a full representation consists solely of minimized Boolean formulas derived by a Boolean minimization method. We discuss why the lower bound fails to hold for satisfiability of certain restricted formulas, such as 2CNF satisfiability, XOR-SAT, and HORN-SAT. We also relate the lower bound to 3CNF satisfiability. The lower bound does not depend on sequentiality of access to the boxes in the symbol space and will hold even if a machine is capable of non-sequential access.Comment: This article draws heavily from arXiv:1406.597

    Minimization for Generalized Boolean Formulas

    Full text link
    The minimization problem for propositional formulas is an important optimization problem in the second level of the polynomial hierarchy. In general, the problem is Sigma-2-complete under Turing reductions, but restricted versions are tractable. We study the complexity of minimization for formulas in two established frameworks for restricted propositional logic: The Post framework allowing arbitrarily nested formulas over a set of Boolean connectors, and the constraint setting, allowing generalizations of CNF formulas. In the Post case, we obtain a dichotomy result: Minimization is solvable in polynomial time or coNP-hard. This result also applies to Boolean circuits. For CNF formulas, we obtain new minimization algorithms for a large class of formulas, and give strong evidence that we have covered all polynomial-time cases

    Depth-Independent Lower bounds on the Communication Complexity of Read-Once Boolean Formulas

    Full text link
    We show lower bounds of Ω(n)\Omega(\sqrt{n}) and Ω(n1/4)\Omega(n^{1/4}) on the randomized and quantum communication complexity, respectively, of all nn-variable read-once Boolean formulas. Our results complement the recent lower bound of Ω(n/8d)\Omega(n/8^d) by Leonardos and Saks and Ω(n/2Ω(dlogd))\Omega(n/2^{\Omega(d\log d)}) by Jayram, Kopparty and Raghavendra for randomized communication complexity of read-once Boolean formulas with depth dd. We obtain our result by "embedding" either the Disjointness problem or its complement in any given read-once Boolean formula.Comment: 5 page

    Stratification and enumeration of Boolean functions by canalizing depth

    Get PDF
    Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively picked off, until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions
    corecore