10,364 research outputs found

    Towards case-based medical learning in radiological decision making using content-based image retrieval

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education.</p> <p>Methods</p> <p>We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment.</p> <p>Results</p> <p>We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system.</p> <p>Conclusions</p> <p>The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer.</p

    Using geographical information systems for management of back-pain data

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2002 MCB UP LtdIn the medical world, statistical visualisation has largely been confined to the realm of relatively simple geographical applications. This remains the case, even though hospitals have been collecting spatial data relating to patients. In particular, hospitals have a wealth of back pain information, which includes pain drawings, usually detailing the spatial distribution and type of pain suffered by back-pain patients. Proposes several technological solutions, which permit data within back-pain datasets to be digitally linked to the pain drawings in order to provide methods of computer-based data management and analysis. In particular, proposes the use of geographical information systems (GIS), up till now a tool used mainly in the geographic and cartographic domains, to provide novel and powerful ways of visualising and managing back-pain data. A comparative evaluation of the proposed solutions shows that, although adding complexity and cost, the GIS-based solution is the one most appropriate for visualisation and analysis of back-pain datasets

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Information Systems and Healthcare XXXIV: Clinical Knowledge Management Systems—Literature Review and Research Issues for Information Systems

    Get PDF
    Knowledge Management (KM) has emerged as a possible solution to many of the challenges facing U.S. and international healthcare systems. These challenges include concerns regarding the safety and quality of patient care, critical inefficiency, disparate technologies and information standards, rapidly rising costs and clinical information overload. In this paper, we focus on clinical knowledge management systems (CKMS) research. The objectives of the paper are to evaluate the current state of knowledge management systems diffusion in the clinical setting, assess the present status and focus of CKMS research efforts, and identify research gaps and opportunities for future work across the medical informatics and information systems disciplines. The study analyzes the literature along two dimensions: (1) the knowledge management processes of creation, capture, transfer, and application, and (2) the clinical processes of diagnosis, treatment, monitoring and prognosis. The study reveals that the vast majority of CKMS research has been conducted by the medical and health informatics communities. Information systems (IS) researchers have played a limited role in past CKMS research. Overall, the results indicate that there is considerable potential for IS researchers to contribute their expertise to the improvement of clinical process through technology-based KM approaches

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 333)

    Get PDF
    This bibliography lists 122 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Measuring cognitive load and cognition: metrics for technology-enhanced learning

    Get PDF
    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive load theory has become established as one of the most successful and influential theoretical explanations of cognitive processing during learning. Despite this success, attempts to obtain direct objective measures of the theory's central theoretical construct – cognitive load – have proved elusive. This obstacle represents the most significant outstanding challenge for successfully embedding the theoretical and experimental work on cognitive load in empirical data from authentic learning situations. Progress to date on the theoretical and practical approaches to cognitive load are discussed along with the influences of individual differences on cognitive load in order to assess the prospects for the development and application of direct empirical measures of cognitive load especially in technology-rich contexts

    Analysing qualitative data from virtual worlds: using images and text mining

    Get PDF
    There is an increasing interest within both organisational and social contexts in virtual worlds and virtual reality platforms. Virtual worlds are highly graphical systems in which avatars interact with each other, and almost every event and conversation is logged and recorded. This presents new challenges for qualitative researchers in information systems. This paper addresses the challenges of analyzing the huge amounts of qualitative data that can be obtained from virtual worlds (both images and text). It addresses how images might be used in qualitative studies of virtual worlds, and proposes a new way to analyze textual data using a qualitative software tool called Leximancer. This paper illustrates these methods using a study of a social movement in a virtual world

    Large Language Models Encode Clinical Knowledge

    Full text link
    Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications
    • …
    corecore