27,283 research outputs found

    Fermionic Implementation of Projected Entangled Pair States Algorithm

    Get PDF
    We present and implement an efficient variational method to simulate two-dimensional finite size fermionic quantum systems by fermionic projected entangled pair states. The approach differs from the original one due to the fact that there is no need for an extra string-bond for contracting the tensor network. The method is tested on a bi-linear fermionic model on a square lattice for sizes up to ten by ten where good relative accuracy is achieved. Qualitatively good results are also obtained for an interacting fermionic system.Comment: As published in Phys. Rev.

    Quantum memories with zero-energy Majorana modes and experimental constraints

    Full text link
    In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero-modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the introduced memory fidelity decays exponentially in time, independent from system size, thus showing the impossibility to retrieve the information by acting on the zero-modes only. We argue, however, that even in the presence of experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.Comment: 18 pages, 7 figures. Updated to published versio

    Exact Solutions and Degenerate Properties of Spin Chains with Reducible Hamiltonians

    Full text link
    The Jordan--Wigner transformation plays an important role in spin models. However, the non-locality of the transformation implies that a periodic chain of NN spins is not mapped to a periodic or an anti-periodic chain of lattice fermions. Since only the N−1N-1 bond is different, the effect is negligible for large systems, while it is significant for small systems. In this paper, it is interesting to find that a class of periodic spin chains can be exactly mapped to a periodic chain and an anti-periodic chain of lattice fermions without redundancy when the Jordan--Wigner transformation is implemented. For these systems, possible high degeneracy is found to appear in not only the ground state but also the excitation states. Further, we take the one-dimensional compass model and a new XY-XY model (σxσy−σxσy\sigma_x\sigma_y-\sigma_x\sigma_y) as examples to demonstrate our proposition. Except for the well-known one-dimensional compass model, we will see that in the XY-XY model, the degeneracy also grows exponentially with the number of sites.Comment: 9 pages, 3 figure

    Arbitrary Dimensional Majorana Dualities and Network Architectures for Topological Matter

    Get PDF
    Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze interacting Majorana systems on general networks and lattices in an arbitrary number of dimensions, and derive various universal spin duals. Such general complex Majorana architectures (other than those of simple square or other crystalline arrangements) might be of empirical relevance. As these systems display low-dimensional symmetries, they are candidates for realizing topological quantum order. We prove that (a) these Majorana systems, (b) quantum Ising gauge theories, and (c) transverse-field Ising models with annealed bimodal disorder are all dual to one another on general graphs. As any Dirac fermion (including electronic) operator can be expressed as a linear combination of two Majorana fermion operators, our results further lead to dualities between interacting Dirac fermionic systems. The spin duals allow us to predict the feasibility of various standard transitions as well as spin-glass type behavior in {\it interacting} Majorana fermion or electronic systems. Several new systems that can be simulated by arrays of Majorana wires are further introduced and investigated: (1) the {\it XXZ honeycomb compass} model (intermediate between the classical Ising model on the honeycomb lattice and Kitaev's honeycomb model), (2) a checkerboard lattice realization of the model of Xu and Moore for superconducting (p+ip)(p+ip) arrays, and a (3) compass type two-flavor Hubbard model with both pairing and hopping terms. By the use of dualities, we show that all of these systems lie in the 3D Ising universality class. We discuss how the existence of topological orders and bounds on autocorrelation times can be inferred by the use of symmetries and also propose to engineer {\it quantum simulators} out of these Majorana networks.Comment: v3,19 pages, 18 figures, submitted to Physical Review B. 11 new figures, new section on simulating the Hubbard model with nanowire systems, and two new appendice

    Topological and Entanglement Properties of Resonating Valence Bond wavefunctions

    Get PDF
    We examine in details the connections between topological and entanglement properties of short-range resonating valence bond (RVB) wave functions using Projected Entangled Pair States (PEPS) on kagome and square lattices on (quasi-)infinite cylinders with generalized boundary conditions (and perimeters with up to 20 lattice spacings). Making use of disconnected topological sectors in the space of dimer lattice coverings, we explicitly derive (orthogonal) "minimally entangled" PEPS RVB states. For the kagome lattice, we obtain, using the quantum Heisenberg antiferromagnet as a reference model, the finite size scaling of the energy separations between these states. In particular, we extract two separate (vanishing) energy scales corresponding (i) to insert a vison line between the two ends of the cylinder and (ii) to pull out and freeze a spin at either end. We also investigate the relations between bulk and boundary properties and show that, for a bipartition of the cylinder, the boundary Hamiltonian defined on the edge can be written as a product of a highly non-local projector with an emergent (local) su(2)-invariant one-dimensional (superfluid) t--J Hamiltonian, which arises due to the symmetry properties of the auxiliary spins at the edge. This multiplicative structure, a consequence of the disconnected topological sectors in the space of dimer lattice coverings, is characteristic of the topological nature of the states. For minimally entangled RVB states, it is shown that the entanglement spectrum, which reflects the properties of the edge modes, is a subset (half for kagome RVB) of the spectrum of the local Hamiltonian, providing e.g. a simple argument on the origin of the topological entanglement entropy S0=-ln 2 of Z2 spin liquids. We propose to use these features to probe topological phases in microscopic Hamiltonians and some results are compared to existing DMRG data.Comment: 15 pages, 19 figures. Large extension of the paper. Finite size scaling of the (topological) ground state energy splittings added (for the Kagome quantum antiferromagnet

    The geometric order of stripes and Luttinger liquids

    Get PDF
    It is argued that the electron stripes as found in correlated oxides have to do with an unrecognized form of order. The manifestation of this order is the robust property that the charge stripes are at the same time anti-phase boundaries in the spin system. We demonstrate that the quantity which is ordering is sublattice parity, referring to the geometric property of a bipartite lattice that it can be subdivided in two sublattices in two different ways. Re-interpreting standard results of one dimensional physics, we demonstrate that the same order is responsible for the phenomenon of spin-charge separation in strongly interacting one dimensional electron systems. In fact, the stripe phases can be seen from this perspective as the precise generalization of the Luttinger liquid to higher dimensions. Most of this paper is devoted to a detailed exposition of the mean-field theory of sublattice parity order in 2+1 dimensions. Although the quantum-dynamics of the spin- and charge degrees of freedom is fully taken into account, a perfect sublattice parity order is imposed. Due to novel order-out-of-disorder physics, the sublattice parity order gives rise to full stripe order at long wavelength. This adds further credibility to the notion that stripes find their origin in the microscopic quantum fluctuations and it suggests a novel viewpoint on the relationship between stripes and high Tc superconductivity.Comment: 29 pages, 14 figures, 1 tabl
    • 

    corecore