412 research outputs found

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    Two-pathogen model with competition on clustered networks

    Get PDF
    Networks provide a mathematically rich framework to represent social contacts sufficient for the transmission of disease. Social networks are often highly clustered and fail to be locally tree-like. In this paper, we study the effects of clustering on the spread of sequential strains of a pathogen using the generating function formulation under a complete cross-immunity coupling, deriving conditions for the threshold of coexistence of the second strain. We show that clustering reduces the coexistence threshold of the second strain and its outbreak size in Poisson networks, whilst exhibiting the opposite effects on uniform-degree models. We conclude that clustering within a population must increase the ability of the second wave of an epidemic to spread over a network. We apply our model to the study of multilayer clustered networks and observe the fracturing of the residual graph at two distinct transmissibilities.Publisher PDFPeer reviewe

    Fragility and anomalous susceptibility of weakly interacting networks

    Get PDF
    Percolation is a fundamental concept that brought new understanding on the robustness properties of complex systems. Here we consider percolation on weakly interacting networks, that is, network layers coupled together by much less interlinks than the connections within each layer. For these kinds of structures, both continuous and abrupt phase transition are observed in the size of the giant component. The continuous (second-order) transition corresponds to the formation of a giant cluster inside one layer, and has a well defined percolation threshold. The abrupt transition instead corresponds to the merger of coexisting giant clusters among different layers, and is characterised by a remarkable uncertainty in the percolation threshold, which in turns causes an anomalous trend in the observed susceptibility. We develop a simple mathematical model able to describe this phenomenon and to estimate the critical threshold for which the abrupt transition is more likely to occur. Remarkably, finite-size scaling analysis in the abrupt region supports the hypothesis of a genuine first-order phase transition

    General and exact approach to percolation on random graphs

    Get PDF
    We present a comprehensive and versatile theoretical framework to study site and bond percolation on clustered and correlated random graphs. Our contribution can be summarized in three main points. (i) We introduce a set of iterative equations that solve the exact distribution of the size and composition of components in finite-size quenched or random multitype graphs. (ii) We define a very general random graph ensemble that encompasses most of the models published to this day and also makes it possible to model structural properties not yet included in a theoretical framework. Site and bond percolation on this ensemble is solved exactly in the infinite-size limit using probability generating functions [i.e., the percolation threshold, the size, and the composition of the giant (extensive) and small components]. Several examples and applications are also provided. (iii) Our approach can be adapted to model interdependent graphs—whose most striking feature is the emergence of an extensive component via a discontinuous phase transition—in an equally general fashion. We show how a graph can successively undergo a continuous then a discontinuous phase transition, and preliminary results suggest that clustering increases the amplitude of the discontinuity at the transition

    Random graphs with arbitrary clustering and their applications

    Get PDF
    The structure of many real networks is not locally treelike and, hence, network analysis fails to characterize their bond percolation properties. In a recent paper [P. Mann, V. A. Smith, J. B. O. Mitchell, and S. Dobson, arXiv:2006.06744], we developed analytical solutions to the percolation properties of random networks with homogeneous clustering (clusters whose nodes are degree equivalent). In this paper, we extend this model to investigate networks that contain clusters whose nodes are not degree equivalent, including multilayer networks. Through numerical examples, we show how this method can be used to investigate the properties of random complex networks with arbitrary clustering, extending the applicability of the configuration model and generating function formulation.Publisher PDFPeer reviewe
    • …
    corecore