1,767 research outputs found

    Bond graph-based analysis of energy conversion in vibration-piezoelectricity coupling and its application to a cantilever vibra tion energy harvester

    Get PDF
    The energy flow in a piezoelectric vibration energy harvester (VEH) involves both the mechanical domain and the electrical domain. To better understand the vibration-piezoelectricity coupling of this device, a unified description approach based on the bond graph is proposed to analyze the influence of the piezoelectric VEH parameters on the electricity harvesting performance in the energy conversion. Both the mechanical structure and the electric circuit are modeled using the bond graph. The present method is applied to analyze the parametric configuration of a piezoelectric VEH, which is further tested on an experimental platform. The results show that the unified model using the bond-graph is well-suited for analyzing the vibration-piezoelectricity coupling. The proposed method can advance the design optimization of piezoelectric VEHs

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Beamforming optimisation in energy harvesting cooperative full-duplex networks with self-energy recycling protocol

    Get PDF
    This study considers the problem of beamforming optimisation in an amplify-and-forward relaying cooperative network, in which the relay node harvests the energy from the radio-frequency signal. Based on the self-energy recycling relay protocol, the authors study the beamforming optimisation problem. The formulated problem aims to maximise the achievable rate subject to the available transmitted power at the relay node. The authors develop a semidefinite programming (SDP) relaxation method to solve the proposed problem. They also use SDP and the full search to solve the beamforming optimisation based on a time-switching relaying protocol as a benchmark. The simulation results are presented to verify that the self-energy recycling protocol achieves a significant rate gain compared with the timeswitching relaying protocol and the power-splitting relaying protocol

    Ultralow Power Energy Harvesting Body Area Network Design: A Case Study

    Get PDF
    Citation: Zheng, C. Y., Kuhn, W. B., & Natarajan, B. (2015). Ultralow Power Energy Harvesting Body Area Network Design: A Case Study. International Journal of Distributed Sensor Networks, 11. doi:10.1155/2015/824705This paper presents an energy harvesting wireless sensor network (EHWSN) architecture designed for use within an astronaut's space suit. The contribution of this work spans both physical (PHY) layer energy harvesting transceiver design and low power medium access control (MAC) solutions. The architecture consists of a star topology with two types of transceiver nodes: a powered gateway radio (GR) node and multiple energy harvesting biosensor radio (BSR) nodes. To demonstrate the feasibility of an EHWSN at the PHY layer, a representative BSR node is implemented. The BSR node is powered by a thermal energy harvesting system (TEHS) which exploits the difference between the temperatures of a space suit's cooling garment and the astronaut's body. It is shown that, through appropriate control of the duty cycle in transmission and receiving modes, it is possible to operate with less than 1 mW generated by the TEHS. This requires ultralow duty cycle which complicates MAC layer design because a BSR node must sleep for more than 99.6% of overall operation time. The challenge for MAC layer design is the inability to predict when the BSR node awakens from sleep mode due to unpredictability of the harvested energy. Therefore, a new feasible MAC layer design, GRI-(gateway radio initialized-) MAC, is proposed and analyzed

    On the performance of regenerative relaying for SWIPT in NOMA Systems

    Get PDF
    As a potential access strategy in 5G mobile communication systems, non-orthogonal multiple access (NOMA) has been proposed as a supplement to the traditional orthogonal multiple access (OMA). This paper investigates simultaneous wireless information and power transfer (SWIPT) in a NOMA relaying system. The data is transferred from a source to two end terminals among which the one close to the source acts as a relay employing decode-and-forward protocol to assist the far-end one. In order to simultaneously harvest the energy and information processing at relay node, power-splitting relaying (PSR) and time switching-based relaying (TSR) protocols are sequentially considered. Outage probability and ergodic rate of both protocols are firstly analyzed to realize the impacts of various parameters including energy harvesting time, power splitting ratio, energy harvesting efficiency, source data rate, and the distance between the source and the relay node. Numerical results are then provided to validate the analytical findings. It is shown that the PSR outperforms the TSR at normal SNR regime in terms of throughput and ergodic rate

    LPcomS: Towards a Low Power Wireless Smart-Shoe System for Gait Analysis in People with Disabilities

    Get PDF
    Gait analysis using smart sensor technology is an important medical diagnostic process and has many applications in rehabilitation, therapy and exercise training. In this thesis, we present a low power wireless smart-shoe system (LPcomS) to analyze different functional postures and characteristics of gait while walking. We have designed and implemented a smart-shoe with a Bluetooth communication module to unobtrusively collect data using smartphone in any environment. With the design of a shoe insole equipped with four pressure sensors, the foot pressure is been collected, and those data are used to obtain accurate gait pattern of a patient. With our proposed portable sensing system and effective low power communication algorithm, the smart-shoe system enables detailed gait analysis. Experimentation and verification is conducted on multiple subjects with different gait including free gait. The sensor outputs, with gait analysis acquired from the experiment, are presented in this thesis

    Energy-Aware System-Level Design of Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are heterogeneous systems in which one or several computational cores interact with the physical environment. This interaction is typically performed through electromechanical elements such as sensors and actuators. Many CPSs operate as part of a network and some of them present a constrained energy budget (for example, they are battery powered). Examples of energy constrained CPSs could be a mobile robot, the nodes that compose a Body Area Network or a pacemaker. The heterogeneity present in the composition of CPSs together with the constrained energy availability makes these systems challenging to design. A way to tackle both complexity and costs is the application of abstract modelling and simulation. This thesis proposed the application of modelling at the system level, taking energy consumption in the different kinds of subsystems into consideration. By adopting this cross disciplinary approach to energy consumption it is possible to decrease it effectively. The results of this thesis are a number of modelling guidelines and tool improvements to support this kind of holistic analysis, covering energy consumption in electromechanical, computation and communication subsystems. From a methodological point of view these have been framed within a V-lifecycle. Finally, this approach has been demonstrated on two case studies from the medical domain enabling the exploration of alternative systems architectures and producing energy consumption estimates to conduct trade-off analysis

    On the performance of NOMA in SWIPT systems with power-splitting relaying

    Get PDF
    This paper presents a decode-and-forward (DF) relaying protocol, namely power-splitting relaying (PSR), employed at relay nodes in NOMA technique. The PSR is considered for simultaneous wireless information and power transfer (SWIPT) systems. The relaying node is both energy harvesting from the received radio frequency (RF) signal and information forwarding to the destination. The outage performance and ergodic rate of the PSR are analyzed to realize the impacts of energy harvesting time, energy harvesting efficiency, power splitting ratio, source data rate, and the distance between the source and relay nodes. The simulation results show that NOMA schemes have the lower outage probability compared to the that of the conventional orthogonal multiple access (OMA) schemes at the destination node. Numerical results are provided to verify the findings
    • …
    corecore