30,041 research outputs found

    A scalable 2.9mW 1Mb/s eTextiles body area network transceiver with remotely powered sensors and bi-directional data communication

    Get PDF
    Advances in sensor design have made ambulatory health monitoring possible and have created the need for low-power communication systems to replace bulkier traditional links. Micropower sensors should also be powered by a non-local energy source for system miniaturization and long life. Recently proposed communication systems using wireless body area networks [1,2] and body-coupled communication [3] suffer from high path loss around the human body for efficient remote power delivery. In contrast, eTextiles are becoming an increasingly popular technology for efficiently powering and communicating with such sensors [4-6] due to wide coverage around the human body combined with low path loss and comfort of use.MIT Masdar Program (Cooperative Agreement 196F/002/707/102f/70/9374

    Communication system for a tooth-mounted RF sensor used for continuous monitoring of nutrient intake

    Get PDF
    In this Thesis, the communication system of a wearable device that monitors the user’s diet is studied. Based in a novel RF metamaterial-based mouth sensor, different decisions have to be made concerning the system’s technologies, such as the power source options for the device, the wireless technology used for communications and the method to obtain data from the sensor. These issues, along with other safety rules and regulations, are reviewed, as the first stage of development of the Food-Intake Monitoring projectOutgoin

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio

    When Both Transmitting and Receiving Energies Matter: An Application of Network Coding in Wireless Body Area Networks

    Get PDF
    A network coding scheme for practical implementations of wireless body area networks is presented, with the objective of providing reliability under low-energy constraints. We propose a simple network layer protocol for star networks, adapting redundancy based on both transmission and reception energies for data and control packets, as well as channel conditions. Our numerical results show that even for small networks, the amount of energy reduction achievable can range from 29% to 87%, as the receiving energy per control packet increases from equal to much larger than the transmitting energy per data packet. The achievable gains increase as a) more nodes are added to the network, and/or b) the channels seen by different sensor nodes become more asymmetric.Comment: 10 pages, 7 figures, submitted to the NC-Pro Workshop at IFIP Networking Conference 2011, and to appear in the conference proceedings, published by Springer-Verlag, in the Lecture Notes in Computer Science (LNCS) serie

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    Š 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693
    • …
    corecore