5,482 research outputs found

    Highly efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate integrated waveguide technology

    Get PDF
    An impulse-radio ultra-wideband (IR-UWB) cavity-backed slot antenna covering the [5.9803; 6.9989] GHz frequency band of the IEEE 802.15.4a-2011 standard is designed and implemented in an air-filled substrate integrated waveguide (AFSIW) technology for localization applications with an accuracy of at least 3 cm. By relying on both frequency and time-domain optimization, the antenna achieves excellent IR-UWB characteristics. In free-space conditions, an impedance bandwidth of 1.92 GHz (or 29.4%), a total efficiency higher than 89%, a front-to-back ratio of at least 12.1 dB, and a gain higher than 6.3 dBi are measured in the frequency domain. Furthermore, a system fidelity factor larger than 98% and a relative group delay smaller than 100 ps are measured in the time domain within the 3 dB beamwidth of the antenna. As a result, the measured time-of-arrival of a transmitted Gaussian pulse, for different angles of arrival, exhibits variations smaller than 100 ps, corresponding to a maximum distance estimation error of 3 cm. Additionally, the antenna is validated in a real-life worst-case deployment scenario, showing that its characteristics remain stable in a large variety of deployment scenarios. Finally, the difference in frequency-and time-domain performance is studied between the antenna implemented in AFSIW and in dielectric filled substrate integrated waveguide (DFSIW) technology. We conclude that DFSIW technology is less suitable for the envisaged precision IR-UWB localization application

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Four-element ultrawideband textile cross array for dual-spatial and dual-polarization diversity

    Get PDF
    The emergence of miniaturized flexible electronics enables on-duty first responders to collect biometrical and environmental data through multiple on-body sensors, integrated into their clothing. However, gathering these life-saving data would be useless if they cannot set up reliable, preferable high-data-rate, wireless communication links between the sensors and a remote base station. Therefore, we have developed a four-element ultrawideband textile cross array that combines dual-spatial and dual-polarization diversity and is easily deployable in a first responder's garment. The impedance bandwidth of the array equals 1.43 GHz, while mutual coupling between its elements remains below -25 dB. For a maximal bit error rate of 1e-4, the array realizes a diversity gain of 24.81 dB. When applying adaptive subcarrier modulation, the mean throughput per orthogonal frequency division multiplexing (OFDM) subcarrier increases by an extra bit/symbol when comparing fourth- to second-order diversity

    Foldable all-textile cavity-backed slot antennas for personal UWB localization

    Get PDF
    An all-textile multimoded cavity-backed slot antenna has been designed and fabricated for body-worn impulse radio ultra-wideband (IR-UWB) operation in the 3,744-4,742.4 MHz frequency band, thereby covering Channels 2 and 3 of the IEEE 802.15.4a standard. Its light weight, mechanical flexibility, and small footprint of 35 mm x 56 mm facilitate integration into textile for radio communication equipment for first aid responders, personal locator beacons, and equipment for localization and medical monitoring of children or the elderly. The antenna features a stable radiation pattern and reflection coefficient in diverse operating conditions such as in free space, when subject to diverse bending radii and when deployed on the torso or upper right arm of a test person. The high isolation toward the wearer's body originates from the antenna's hemispherical radiation pattern with a -3 dB beamwidth of 120 degrees and a front-to-back ratio higher than 11 dB over the entire band. Moreover, the antenna exhibits a measured maximum gain higher than 6.3 dBi and a radiation efficiency over 75%. In addition, orientation-specific pulse distortion introduced by the antenna element is analyzed by means of the System Fidelity Factor (SFF). The SFF of the communication link between two instances of this antenna is higher than 94% for all directions within the antenna's -3 dB beamwidth. This easily wearable and deployable antenna is suitable to support IR-UWB localization with an accuracy in the order of 5 cm

    Characterisation of an aperture-stacked patch antenna for ultra-wideband wearable radio systems

    Get PDF
    This paper presents, for the first time, the time-domain characteristics of an aperture-stacked patch antenna (ASPA) for ultra-wideband (UWB) wearable devices. The methodology of antennas characterization for UWB radio systems is also outlined. The antenna operates within the 3-6 GHz frequency band. Time- and frequency-domain characteristics of this antenna are presented in transmission mode (Tx), receiving mode (Rx) and for 2-antenna (Tx-Rx) system. The pulse driving the antenna has duration of 0.65 ns. In the Tx mode, pulses radiated in different directions of the H-plane have very similar shapes. Fidelity factors are as high as 91.6-99.9%. For 2-antenna system, pulses received in normal and end-fire-like directions have the fidelity of 69.5%. As it was found, antenna does not behave "reciprocal" comparing Tx and Rx modes. For normal propagation direction, radiated pulse is the 2nd derivative of the input waveform, but in the Rx mode, received pulse is the 1st derivative of the incident plane wave. This antenna can be used for transmission of short-pulses, even 0.65-1 ns in duration. It is also small (patch planar dimensions 32/19 mm) and compact. Microstrip configuration allows further integration of active devices on the same board. Taking into account above results we can say that ASPA is a good candidate for UWB non-invasive wireless body area network (WBAN) applications

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    Novel small-size directional antenna for UWB WBAN/WPAN applications

    Get PDF

    Active textile antennas in professional garments for sensing, localisation and communication

    Get PDF
    New wireless wearable monitoring systems integrated in professional garments require a high degree of reliability and autonomy. Active textile antenna systems may serve as platforms for body-centric sensing, localisation, and wireless communication systems, in the meanwhile being comfortable and invisible to the wearer. We present a new dedicated comprehensive design paradigm and combine this with adapted signal-processing techniques that greatly enhance the robustness and the autonomy of these systems. On the one hand, the large amount of real estate available in professional rescue worker garments may be exploited to deploy multiple textile antennas. On the other hand, the size of each radiator may be designed large enough to ensure high radiation efficiency when deployed on the body. This antenna area is then reused by placing active electronics directly underneath and energy harvesters directly on top of the antenna patch. We illustrate this design paradigm by means of recent textile antenna prototypes integrated in professional garments, providing sensing, positioning, and communication capabilities. In particular, a novel wearable active Galileo E1-band antenna is presented and fully characterized, including noise figure, and linearity performance

    On the Bandwidth of High-Impedance Frequency Selective Surfaces

    Full text link
    In this letter, the bandwidth of high-impedance surfaces (HISs) is discussed by an equivalent circuit approach. Even if these surfaces have been employed for almost 10 years, it is sometimes unclear how to choose the shape of the frequency selective surface (FSS) on the top of the grounded slab in order to achieve the largest possible bandwidth. Here, we will show that the conventional approach describing the HIS as a parallel connection between the inductance given by the grounded dielectric substrate and the capacitance of the FSS may induce inaccurate results in the determination of the operating bandwidth of the structure. Indeed, in order to derive a more complete model and to provide a more accurate estimate of the operating bandwidth, it is also necessary to introduce the series inductance of the FSS.We will present the explicit expression for defining the bandwidth of a HIS, and we will show that the reduction of the FSS inductance results in the best choice for achieving wide operating bandwidth in correspondence with a given frequency.Comment: 4 pages, 6 figure
    • 

    corecore