39,277 research outputs found

    Extending a mobile device's interaction space through body-centric interaction

    Full text link
    Modern mobile devices rely on the screen as a primary input modality. Yet the small screen real-estate limits interaction possibilities, motivating researchers to explore alternate input techniques. Within this arena, our goal is to develop Body-Centric Interaction with Mobile Devices: a class of input techniques that allow a person to position and orient her mobile device to navigate and manipulate digital content anchored in the space on and around the body. To achieve this goal, we explore such interaction in a bottomup path of prototypes and implementations. From our experiences, as well as by examining related work, we discuss and present three recurring themes that characterize how these interactions can be realized. We illustrate how these themes can inform the design of Body-Centric Interactions by applying them to the design of a novel mobile browser application. Overall, we contribute a class of mobile input techniques where interactions are extended beyond the small screen, and are instead driven by a person's movement of the device on and around the body. Copyright 2012 ACM

    Beyond representations: towards an action-centric perspective on tangible interaction

    Get PDF
    In the light of theoretical as well as concrete technical development, we discuss a conceptual shift from an information-centric to an action-centric perspective on tangible interactive technology. We explicitly emphasise the qualities of shareable use, and the importance of designing tangibles that allow for meaningful manipulation and control of the digital material. This involves a broadened focus from studying properties of the interface, to instead aim for qualities of the activity of using a system, a general tendency towards designing for social and sharable use settings and an increased openness towards multiple and subjective interpretations. An effect of this is that tangibles are not designed as representations of data, but as resources for action. We discuss four ways that tangible artefacts work as resources for action: (1) for physical manipulation; (2) for referential, social and contextually oriented action; (3) for perception and sensory experience; (4) for digitally mediated action

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Device-Centric Monitoring for Mobile Device Management

    Full text link
    The ubiquity of computing devices has led to an increased need to ensure not only that the applications deployed on them are correct with respect to their specifications, but also that the devices are used in an appropriate manner, especially in situations where the device is provided by a party other than the actual user. Much work which has been done on runtime verification for mobile devices and operating systems is mostly application-centric, resulting in global, device-centric properties (e.g. the user may not send more than 100 messages per day across all applications) being difficult or impossible to verify. In this paper we present a device-centric approach to runtime verify the device behaviour against a device policy with the different applications acting as independent components contributing to the overall behaviour of the device. We also present an implementation for Android devices, and evaluate it on a number of device-centric policies, reporting the empirical results obtained.Comment: In Proceedings FESCA 2016, arXiv:1603.0837
    • 

    corecore