1,275 research outputs found

    Infrared thermography-calorimetric quantitation of energy expenditure in biomechanically different types of jūdō throwing techniques: a pilot study

    Get PDF
    It was the purpose of this pilot study to assess the energy expenditure (EE) of two biome-chanically different jūdō throws, namely, the simple mechanical couple-based uchi-mata vs. the lever-based throw ippon-seoi-nage, using infrared thermal calorimetry (ITC). Testing subjects included one Caucasian female elite athlete (age: 26.4 years) and one male veteran jūdōka (age: 50.8 years). ITC images were captured by an Avio NEC InfRec R300 camera and thermal data obtained were plotted into a proprietary equation for estimation of EE. Data were compared to respiratory data obtained by a Cosmed K4 b2 portable gas analyzer. Oxy-gen consumption as estimated by ITC capture during practice of uchi-mata was markedly lower than during performance ippon-seoi-nage in the female (457 mL•min-1 vs. 540 mL•min-1, P<0.05) and male subject (1,078 mL•min-1 vs. 1,088 mL•min-1, NS), with the difference in values between both genders subject being significant (P<0.01). The metabolic cost of the exercise (uchi-mata vs. ippon-seoi-nage) itself was 1.26 kcal•min-1 (88 W) vs. 1.68 kcal•min-1 (117 W) (P<0.05) in the female subject, and 2.97 kcal•min-1 (207 W) (P<0.01) vs. 3.02 kcal•min-1 (211 W) (NS) in the male subject. Values for the female were significantly differ-ent (P<0.01) from those of the male subject. The results support the initial hypothesis that the couple-based jūdō throws (in this case, uchi-mata) are energetically more efficient than lever-based throws, such as ippon-seoi-nage. Application of this approach may be of practical use for coaches in optimizing energy-saving strategies in both elite and veteran jūdō athletes

    Reporting of thermography parameters in biology: a systematic review of thermal imaging literature

    Get PDF
    This is the final version. Available from the Royal Society via the DOI in this record. Data accessibility: All data are available in the electronic supplementary material.Infrared (IR) thermography, where temperature measurements are made with IR cameras, has proven to be a very useful and widely used tool in biological science. Several thermography parameters are critical to the proper operation of thermal cameras and the accuracy of measurements, and these must usually be provided to the camera. Failure to account for these parameters may lead to less accurate measurements. Furthermore, the failure to provide information of parameter choices in reports may compromise appraisal of accuracy and replicate studies. In this review, we investigate how well biologists report thermography parameters. This is done through a systematic review of biological thermography literature that included articles published between years 2007 and 2017. We found that in primary biological thermography papers, which make some kind of quantitative temperature measurement, 48% fail to report values used for emissivity (an object's capacity to emit thermal radiation relative to a black body radiator), which is the minimum level of reporting that should take place. This finding highlights the need for life scientists to take into account and report key parameter information when carrying out thermography, in the future.Natural Environment Research Counci

    Unsupervised automatic tracking of thermal changes in human body

    Get PDF
    An automated system for detecting and tracking of the thermal fluctuation in human body is addressed. It applies HSV based k-means clustering which initialized and controlled the points which lie on the ROI boundary. Afterward a particle filter tracked the targeted ROI in the thermal video stream. There were six subjects have voluntarily participated on these experiments. For simulating the hot spots occur during the some medical tests a controllable heater utilized close to the subjects body. The results indicated promising accuracy of the proposed approach for tracking the hot spots. However, there were some approximations (e.g. the transmittance of the atmosphere and emissivity of the fabric) which can be neglected because of independency of the proposed approach for these parameters. The approach can track the heating spots efficiently considering the movement in the subjects which provided a confidence of considerable robustness against motion-artifact usually occurs in the medical tests

    Incremental low rank noise reduction for robust infrared tracking of body temperature during medical imaging

    Get PDF
    Thermal imagery for monitoring of body temperature provides a powerful tool to decrease health risks (e.g., burning) for patients during medical imaging (e.g., magnetic resonance imaging). The presented approach discusses an experiment to simulate radiology conditions with infrared imaging along with an automatic thermal monitoring/tracking system. The thermal tracking system uses an incremental low-rank noise reduction applying incremental singular value decomposition (SVD) and applies color based clustering for initialization of the region of interest (ROI) boundary. Then a particle filter tracks the ROI(s) from the entire thermal stream (video sequence). The thermal database contains 15 subjects in two positions (i.e., sitting, and lying) in front of thermal camera. This dataset is created to verify the robustness of our method with respect to motion-artifacts and in presence of additive noise (2–20%—salt and pepper noise). The proposed approach was tested for the infrared images in the dataset and was able to successfully measure and track the ROI continuously (100% detecting and tracking the temperature of participants), and provided considerable robustness against noise (unchanged accuracy even in 20% additive noise), which shows promising performanc

    Automated assessment and tracking of human body thermal variations using unsupervised clustering

    Get PDF
    The presented approach addresses a review of the overheating that occurs during radiological examinations, such as magnetic resonance imaging, and a series of thermal experiments to determine a thermally suitable fabric material that should be used for radiological gowns. Moreover, an automatic system for detecting and tracking of the thermal fluctuation is presented. It applies hue-saturated-value-based kernelled k-means clustering, which initializes and controls the points that lie on the region-of-interest (ROI) boundary. Afterward, a particle filter tracks the targeted ROI during the video sequence independently of previous locations of overheating spots. The proposed approach was tested during experiments and under conditions very similar to those used during real radiology exams. Six subjects have voluntarily participated in these experiments. To simulate the hot spots occurring during radiology, a controllable heat source was utilized near the subject’s body. The results indicate promising accuracy for the proposed approach to track hot spots. Some approximations were used regarding the transmittance of the atmosphere, and emissivity of the fabric could be neglected because of the independence of the proposed approach for these parameters. The approach can track the heating spots continuously and correctly, even for moving subjects, and provides considerable robustness against motion artifact, which occurs during most medical radiology procedures

    Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils) temperature profile associated with the inspiration and expiration phases successively.</p> <p>Objective</p> <p>The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU) using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI) detection) and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards.</p> <p>Results</p> <p>Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases.</p> <p>Conclusions</p> <p>Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU). The promising results suggest to include this technology into advanced NICU monitors.</p

    行動と体温の概日変動を支配する共通および個別メカニズムの同定

    Get PDF
    京都大学新制・課程博士博士(薬科学)甲第23142号薬科博第141号新制||薬科||15(附属図書館)京都大学大学院薬学研究科医薬創成情報科学専攻(主査)教授 土居 雅夫, 教授 中山 和久, 教授 竹島 浩学位規則第4条第1項該当Doctor of Pharmaceutical SciencesKyoto UniversityDFA

    Dynamic Thermal Imaging for Intraoperative Monitoring of Neuronal Activity and Cortical Perfusion

    Get PDF
    Neurosurgery is a demanding medical discipline that requires a complex interplay of several neuroimaging techniques. This allows structural as well as functional information to be recovered and then visualized to the surgeon. In the case of tumor resections this approach allows more fine-grained differentiation of healthy and pathological tissue which positively influences the postoperative outcome as well as the patient's quality of life. In this work, we will discuss several approaches to establish thermal imaging as a novel neuroimaging technique to primarily visualize neural activity and perfusion state in case of ischaemic stroke. Both applications require novel methods for data-preprocessing, visualization, pattern recognition as well as regression analysis of intraoperative thermal imaging. Online multimodal integration of preoperative and intraoperative data is accomplished by a 2D-3D image registration and image fusion framework with an average accuracy of 2.46 mm. In navigated surgeries, the proposed framework generally provides all necessary tools to project intraoperative 2D imaging data onto preoperative 3D volumetric datasets like 3D MR or CT imaging. Additionally, a fast machine learning framework for the recognition of cortical NaCl rinsings will be discussed throughout this thesis. Hereby, the standardized quantification of tissue perfusion by means of an approximated heating model can be achieved. Classifying the parameters of these models yields a map of connected areas, for which we have shown that these areas correlate with the demarcation caused by an ischaemic stroke segmented in postoperative CT datasets. Finally, a semiparametric regression model has been developed for intraoperative neural activity monitoring of the somatosensory cortex by somatosensory evoked potentials. These results were correlated with neural activity of optical imaging. We found that thermal imaging yields comparable results, yet doesn't share the limitations of optical imaging. In this thesis we would like to emphasize that thermal imaging depicts a novel and valid tool for both intraoperative functional and structural neuroimaging

    Review of InfraRed Thermography and Ground-Penetrating Radar applications for building assessment

    Get PDF
    The first appearance of concern for the good condition of a building dates back to ancient times. In recent years, with the emergence of new inspection technologies and the growing concern about climate change and people’s health, the concern about the integrity of building structures has been extended to their analysis as insulating envelopes. In addition, the growing network of historic buildings gives this sector special attention. Therefore, this study presents a comprehensive review of the application of two of the most common and most successful Non-Destructive Techniques (NDTs) when inspecting a building: InfraRed Thermography (IRT) and Ground-Penetrating Radar (GPR). To the best knowledge of the authors, it is the first time that a joint compilation of the state-of-the-art of both IRT and GPR for building evaluation is performed in the same work, with special emphasis on applications that integrate both technologies. The authors briefly explain the performance of each NDT, along with the individual and collective advantages of their uses in the building sector. Subsequently, an in-depth analysis of the most relevant references is described, according to the building materials to be studied and the purpose to be achieved: structural safety, energy efficiency and well-being, and heritage preservation. Then, three different case studies are presented with the aim of illustrating the potential of the combined use of IRT and GPR in the evaluation of buildings for the purposes defined. Last, the final remarks and future lines are described on the application of these two interesting inspection technologies in the preservation and conservation of the building sector.European Union Next GenerationEU/PRTRAgencia Estatal de Investigación | Ref. PDC2021-121239-C32Agencia Estatal de Investigación | Ref. RYC2019-026604-
    corecore