68 research outputs found

    Formula partitioning revisited

    Get PDF
    Dividing a Boolean formula into smaller independent sub-formulae can be a useful technique for accelerating the solution of Boolean problems, including SAT and #SAT. Nevertheless, and despite promising early results, formula partitioning is hardly used in state-of-the-art solvers. In this paper, we show that this is rooted in a lack of consistency of the usefulness of formula partitioning techniques. In particular, we evaluate two existing and a novel partitioning model, coupled with two existing and two novel partitioning algorithms, on a wide range of benchmark instances. Our results show that there is no one-size-fits-all solution: for different formula types, different partitioning models and algorithms are the most suitable. While these results might seem negative, they help to improve our understanding about formula partitioning; moreover, the findings also give guidance as to which method to use for what kinds of formulae

    Engineering handbook

    Get PDF
    1995 handbook for the faculty of Engineerin

    Engineering handbook

    Get PDF
    1996 handbook for the faculty of Engineerin

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Proceedings of the Fourth MIT/ONR Workshop on Distributed Information and Decision Systems Motivated by Command-Control-Communications (C3) Problems, June 15-June 26, 1981, San Diego, California

    Get PDF
    "OSP number 85552"--Cover.Library has v. 2 only.Includes bibliographies.Workshop suppported by the Office of Naval Research under contract ONR/N00014-77-C-0532edited by Michael Athans ... [et al.].v.1. Surveillance and target tracking--v.2. Systems architecture and evaluation--v.3. Communication, data bases & decision support--v.4. C3 theory

    Optimum Distribution System Architectures for Efficient Operation of Hybrid AC/DC Power Systems Involving Energy Storage and Pulsed Loads

    Get PDF
    After more than a century of the ultimate dominance of AC in distribution systems, DC distribution is being re-considered. However, the advantages of AC systems cannot be omitted. This is mainly due to the cheap and efficient means of generation provided by the synchronous AC machines and voltage stepping up/down allowed by the AC transformers. As an intermediate solution, hybrid AC/DC distribution systems or microgrids are proposed. This hybridization of distribution systems, incorporation of heterogeneous mix of energy sources, and introducing Pulsed Power Loads (PPL) together add more complications and challenges to the design problem of distribution systems. In this dissertation, a comprehensive multi-objective optimization approach is presented to determine the optimal design of the AC/DC distribution system architecture. The mathematical formulation of a multi-objective optimal power flow problem based on the sequential power flow method and the Pareto concept is developed and discussed. The outcome of this approach is to answer the following questions: 1) the optimal size and location of energy storage (ES) in the AC/DC distribution system, 2) optimal location of the PPLs, 3) optimal point of common coupling (PCC) between the AC and DC sides of the network, and 4) optimal network connectivity. These parameters are to be optimized to design a distribution architecture that supplies the PPLs, while fulfilling the safe operation constraints and the related standard limitations. The optimization problem is NP-hard, mixed integer and combinatorial with nonlinear constraints. Four objectives are involved in the problem: minimizing the voltage deviation (ΔV), minimizing frequency deviation (Δf), minimizing the active power losses in the distribution system and minimizing the energy storage weight. The last objective is considered in the context of ship power systems, where the equipment’s weight and size are restricted. The utilization of Hybrid Energy Storage Systems (HESS) in PPL applications is investigated. The design, hardware implementation and performance evaluation of an advanced – low cost Modular Energy Storage regulator (MESR) to efficiently integrate ES to the DC bus are depicted. MESR provides a set of unique features: 1) It is capable of controlling each individual unit within a series/parallel array (i.e. each single unit can be treated, controlled and monitored separately from the others), 2) It is able to charge some units within an ES array while other units continue to serve the load, 3) Balance the SoC without the need for power electronic converters, and 4) It is able to electrically disconnect a unit and allow the operator to perform the required maintenance or replacement without affecting the performance of the whole array. A low speed flywheel Energy Storage System (FESS) is designed and implemented to be used as an energy reservoir in PPL applications. The system was based on a separately excited DC machine and a bi-directional Buck-Boost converter as the driver to control the charging/discharging of the flywheel. Stable control loops were designed to charge the FESS off the pulse and discharge on the pulse. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed

    Proceedings of the 5th MIT/ONR Workshop on C[3] Systems, held at Naval Postgraduate School, Monterey, California, August 23 to 27, 1982

    Get PDF
    "December 1982."Includes bibliographies and index.Office of Naval Research Contract no. ONR/N00014-77-C-0532 NR041-519edited by Michael Athans ... [et al.]

    1971-1972 CATALOG ISSUE- BULLETIN

    Get PDF
    Course catalog for 1971-1972https://digitalrepository.unm.edu/course_catalogs/1079/thumbnail.jp
    corecore