951 research outputs found

    A deep learning framework for quality assessment and restoration in video endoscopy

    Full text link
    Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.Comment: 14 page

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin

    A Pattern Classification Based approach for Blur Classification

    Get PDF
    Blur type identification is one of the most crucial step of image restoration. In case of blind restoration of such images, it is generally assumed that the blur type is known prior to restoration of such images. However, it is not practical in real applications. So, blur type identification is extremely desirable before application of blind restoration technique to restore a blurred image. An approach to categorize blur in three classes namely motion, defocus, and combined blur is presented in this paper. Curvelet transform based energy features are utilized as features of blur patterns and a neural network is designed for classification. The simulation results show preciseness of proposed approach

    Blur Classification Using Segmentation Based Fractal Texture Analysis

    Get PDF
    The objective of vision based gesture recognition is to design a system, which can understand the human actions and convey the acquired information with the help of captured images. An image restoration approach is extremely required whenever image gets blur during acquisition process since blurred images can severely degrade the performance of such systems. Image restoration recovers a true image from a degraded version. It is referred as blind restoration if blur information is unidentified. Blur identification is essential before application of any blind restoration algorithm. This paper presents a blur identification approach which categories a hand gesture image into one of the sharp, motion, defocus and combined blurred categories. Segmentation based fractal texture analysis extraction algorithm is utilized for featuring the neural network based classification system. The simulation results demonstrate the preciseness of proposed method

    Defocused Image Restoration with Local Polynomial Regression and IWF

    Get PDF

    METODA AUTOMATYCZNEJ IDENTYFIKACJI TYPU OBRAZÓW ROZMYTYCH

    Get PDF
    Automatic identification method of the blur type is an important stage in automatic restoring and segmentation of partially blurred images.This article describes automatic identification method of blurred images that also allows to estimate the blur angle parameter. This method contains five steps: 1) applying modified Sobel operator to the input image; 2) image cutting on perimeter in order to eliminate the negative effects occurred at the previous step; 3) construction sequentially blurred image’s versions from the step 2 with fixed radius; 4) similarity measure calculation of sequentially blurred image’s versions along with original image; 5) estimation of the criterion value. Method has been tested and has shown correct result in more than 90% of input images, and the average angle’s error does not exceed more than 8 degrees.Metoda automatycznej identyfikacji typu rozmycia jest ważnym etapem w zagadnieniach automatycznego przywracania i segmentacji obrazów częściowo zniekształconych. W artykule rozpatrzono metodę automatycznej identyfikacji obrazów rozmytych pozwalającą również określić kąt rozmycia. Metoda ta obejmuje pięć kroków: 1) zastosowanie do wejściowego obrazu zmodyfikowanego operatora Sobela; 2) cięcie obrazu na obwodzie w celu wyeliminowania negatywnych skutków występujących w poprzednim kroku; 3) budowa kolejno wersji obrazów rozmytych z kroku 2 zachowując zdefiniowany stały promień; 4) obliczenie miary podobieństwa wersji obrazów kolejno rozmytych z oryginalnym obrazem; 5) wyznaczenie wartości kryterium. Testowanie metody wykazało prawidłowy wynik w ponad 90% obrazów wejściowych, a średni błąd określenia kąta rozmycia nie przekracza 8 stopni

    UG^2: a Video Benchmark for Assessing the Impact of Image Restoration and Enhancement on Automatic Visual Recognition

    Full text link
    Advances in image restoration and enhancement techniques have led to discussion about how such algorithmscan be applied as a pre-processing step to improve automatic visual recognition. In principle, techniques like deblurring and super-resolution should yield improvements by de-emphasizing noise and increasing signal in an input image. But the historically divergent goals of the computational photography and visual recognition communities have created a significant need for more work in this direction. To facilitate new research, we introduce a new benchmark dataset called UG^2, which contains three difficult real-world scenarios: uncontrolled videos taken by UAVs and manned gliders, as well as controlled videos taken on the ground. Over 160,000 annotated frames forhundreds of ImageNet classes are available, which are used for baseline experiments that assess the impact of known and unknown image artifacts and other conditions on common deep learning-based object classification approaches. Further, current image restoration and enhancement techniques are evaluated by determining whether or not theyimprove baseline classification performance. Results showthat there is plenty of room for algorithmic innovation, making this dataset a useful tool going forward.Comment: Supplemental material: https://goo.gl/vVM1xe, Dataset: https://goo.gl/AjA6En, CVPR 2018 Prize Challenge: ug2challenge.or
    corecore