32,718 research outputs found

    Improved Handling of Motion Blur in Online Object Detection

    Get PDF
    We wish to detect specific categories of objects, for on-line vision systems that will run in the real world. Object detection is already very challenging. It is even harder when the images are blurred, from the camera being in a car or a hand-held phone. Most existing efforts either focused on sharp images, with easy to label ground truth, or they have treated motion blur as one of many generic corruptions.Instead, we focus especially on the details of egomotion induced blur. We explore five classes of remedies, where each targets different potential causes for the performance gap between sharp and blurred images. For example, first deblurring an image changes its human interpretability, but at present, only partly improves object detection. The other four classes of remedies address multi-scale texture, out-of-distribution testing, label generation, and conditioning by blur-type. Surprisingly, we discover that custom label generation aimed at resolving spatial ambiguity, ahead of all others, markedly improves object detection. Also, in contrast to findings from classification, we see a noteworthy boost by conditioning our model on bespoke categories of motion blur.We validate and cross-breed the different remedies experimentally on blurred COCO images and real-world blur datasets, producing an easy and practical favorite model with superior detection rates

    Plant recognition, detection, and counting with deep learning

    Get PDF
    In agricultural and farm management, plant recognition, plant detection, and plant counting systems are crucial. We can apply these tasks to several applications, for example, plant disease detection, weed detection, fruit harvest system, and plant species identification. Plants can be identified by looking at their most discriminating parts, such as a leaf, fruit, flower, bark, and the overall plant, by considering attributes as shape, size, or color. However, the identification of plant species from field observation can be complicated, time-consuming, and requires specialized expertise. Computer vision and machine-learning techniques have become ubiquitous and are invaluable to overcome problems with plant recognition in research. Although these techniques have been of great help, image-based plant recognition is still a challenge. There are several obstacles, such as considerable species diversity, intra-class dissimilarity, inter-class similarity, and blurred resource images. Recently, the emerging of deep learning has brought substantial advances in image classification. Deep learning architectures can learn from images and notably increase their predictive accuracy. This thesis provides various techniques, including data augmentation and classification schemes, to improve plant recognition, plant detection, and plant counting system

    WPU-Net: Boundary Learning by Using Weighted Propagation in Convolution Network

    Full text link
    Deep learning has driven a great progress in natural and biological image processing. However, in material science and engineering, there are often some flaws and indistinctions in material microscopic images induced from complex sample preparation, even due to the material itself, hindering the detection of target objects. In this work, we propose WPU-net that redesigns the architecture and weighted loss of U-Net, which forces the network to integrate information from adjacent slices and pays more attention to the topology in boundary detection task. Then, the WPU-net is applied into a typical material example, i.e., the grain boundary detection of polycrystalline material. Experiments demonstrate that the proposed method achieves promising performance and outperforms state-of-the-art methods. Besides, we propose a new method for object tracking between adjacent slices, which can effectively reconstruct 3D structure of the whole material. Finally, we present a material microscopic image dataset with the goal of advancing the state-of-the-art in image processing for material science.Comment: technical repor
    • …
    corecore