581 research outputs found

    Computational Imaging Approach to Recovery of Target Coordinates Using Orbital Sensor Data

    Get PDF
    This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data. Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore a simulated target path is generated using Bezier curves which approximate representative paths followed by the targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only information available for calculating the target position by a fully implemented system are the sensor position and orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to system components on overall capabilities and address the potential system size, weight, and power requirements from realistic implementation approaches

    Color image quality measures and retrieval

    Get PDF
    The focus of this dissertation is mainly on color image, especially on the images with lossy compression. Issues related to color quantization, color correction, color image retrieval and color image quality evaluation are addressed. A no-reference color image quality index is proposed. A novel color correction method applied to low bit-rate JPEG image is developed. A novel method for content-based image retrieval based upon combined feature vectors of shape, texture, and color similarities has been suggested. In addition, an image specific color reduction method has been introduced, which allows a 24-bit JPEG image to be shown in the 8-bit color monitor with 256-color display. The reduction in download and decode time mainly comes from the smart encoder incorporating with the proposed color reduction method after color space conversion stage. To summarize, the methods that have been developed can be divided into two categories: one is visual representation, and the other is image quality measure. Three algorithms are designed for visual representation: (1) An image-based visual representation for color correction on low bit-rate JPEG images. Previous studies on color correction are mainly on color image calibration among devices. Little attention was paid to the compressed image whose color distortion is evident in low bit-rate JPEG images. In this dissertation, a lookup table algorithm is designed based on the loss of PSNR in different compression ratio. (2) A feature-based representation for content-based image retrieval. It is a concatenated vector of color, shape, and texture features from region of interest (ROI). (3) An image-specific 256 colors (8 bits) reproduction for color reduction from 16 millions colors (24 bits). By inserting the proposed color reduction method into a JPEG encoder, the image size could be further reduced and the transmission time is also reduced. This smart encoder enables its decoder using less time in decoding. Three algorithms are designed for image quality measure (IQM): (1) A referenced IQM based upon image representation in very low-dimension. Previous studies on IQMs are based on high-dimensional domain including spatial and frequency domains. In this dissertation, a low-dimensional domain IQM based on random projection is designed, with preservation of the IQM accuracy in high-dimensional domain. (2) A no-reference image blurring metric. Based on the edge gradient, the degree of image blur can be measured. (3) A no-reference color IQM based upon colorfulness, contrast and sharpness

    Adaptive Representations for Image Restoration

    Get PDF
    In the �eld of image processing, building good representation models for natural images is crucial for various applications, such as image restora- tion, sampling, segmentation, etc. Adaptive image representation models are designed for describing the intrinsic structures of natural images. In the classical Bayesian inference, this representation is often known as the prior of the intensity distribution of the input image. Early image priors have forms such as total variation norm, Markov Random Fields (MRF), and wavelets. Recently, image priors obtained from machine learning tech- niques tend to be more adaptive, which aims at capturing the natural image models via learning from larger databases. In this thesis, we study adaptive representations of natural images for image restoration. The purpose of image restoration is to remove the artifacts which degrade an image. The degradation comes in many forms such as image blurs, noises, and artifacts from the codec. Take image denoising for an example. There are several classic representation methods which can generate state- of-the-art results. The �rst one is the assumption of image self-similarity. However, this representation has the issue that sometimes the self-similarity assumption would fail because of high noise levels or unique image contents. The second one is the wavelet based nonlocal representation, which also has a problem in that the �xed basis function is not adaptive enough for any arbitrary type of input images. The third is the sparse coding using over- complete dictionaries, which does not have the hierarchical structure that is similar to the one in human visual system and is therefore prone to denoising artifacts. My research started from image denoising. Through the thorough review and evaluation of state-of-the-art denoising methods, it was found that the representation of images is substantially important for the denoising tech- nique. At the same time, an improvement on one of the nonlocal denoising method was proposed, which improves the representation of images by the integration of Gaussian blur, clustering and Rotationally Invariant Block Matching. Enlightened by the successful application of sparse coding in compressive sensing, we exploited the image self-similarity by using a sparse representation based on wavelet coe�cients in a nonlocal and hierarchical way, which generates competitive results compared to the state-of-the-art denoising algorithms. Meanwhile, another adaptive local �lter learned by Genetic Programming (GP) was proposed for e�cient image denoising. In this work, we employed GP to �nd the optimal representations for local im- age patches through training on massive datasets, which yields competitive results compared to state-of-the-art local denoising �lters. After success- fully dealt with the denoising part, we moved to the parameter estimation for image degradation models. For instance, image blur identi�cation uses deep learning, which has recently been proposed as a popular image repre- sentation approach. This work has also been extended to blur estimation based on the fact that the second step of the framework has been replaced with general regression neural network. In a word, in this thesis, spatial cor- relations, sparse coding, genetic programming, deep learning are explored as adaptive image representation models for both image restoration and parameter estimation. We conclude this thesis by considering methods based on machine learning to be the best adaptive representations for natural images. We have shown that they can generate better results than conventional representation mod- els for the tasks of image denoising and deblurring

    Parameters Estimation For Image Restoration

    Get PDF
    Image degradation generally occurs due to transmission channel error, camera mis-focus, atmospheric turbulence, relative object-camera motion, etc. Such degradations are unavoidable while a scene is captured through a camera. As degraded images are having less scientific values, restoration of such images is extremely essential in many practical applications. In this thesis, attempts have been made to recover images from their degraded observations. Various degradations including, out-of-focus blur, motion blur, atmospheric turbulence blur along with Gaussian noise are considered. Basically image restoration schemes are based on classical, regularisation parameter estimation and PSF estimation. In this thesis, five different contributions have been made based on various aspects of restoration. Four of them deal with spatial invariant degradation and in one of the approach we attempt for removal of spatial variant degradation. Two different schemes are proposed to estimate the motion blur parameters. Two dimensional Gabor filter has been used to calculate the direction of the blur. Radial basis function neural network (RBFNN) has been utilised to find the length of the blur. Subsequently, Wiener filter has been used to restore the images. Noise robustness of the proposed scheme is tested with different noise strengths. The blur parameter estimation problem is modelled as a pattern classification problem and is solved using support vector machine (SVM). The length parameter of motion blur and sigma (σ) parameter of Gaussian blur are identified through multi-class SVM. Support vector regression (SVR) has been utilised to obtain a true mapping of the images from the observed noisy blurred image. The parameters in SVR play a key role in SVR performance and these are optimised through particle swarm optimisation (PSO) technique. The optimised SVR model is used to restore the noisy blurred images. Blur in the presence of noise makes the restoration problem ill-conditioned. The regularisation parameter required for restoration of noisy blurred image is discussed and for the purpose, a global optimisation scheme namely PSO is utilisedto minimise the cost function of generalised cross validation (GCV) measure, which is dependent on regularisation parameter. This eliminates the problem of falling into a local minima. The scheme adapts to degradations due to motion and out-of-focus blur, associated with noise of varying strengths. In another contribution, an attempt has been made to restore images degraded due to rotational motion. Such situation is considered as spatial variant blur and handled by considering this as a combination of a number of spatial invariant blurs. The proposed scheme divides the blurred image into a number of images using elliptical path modelling. Each image is deblurred separately using Wiener filter and finally integrated to construct the whole image. Each model is studied separately, and experiments are conducted to evaluate their performances. The visual as well as the peak signal to noise ratio (PSNR in dB) of restored images are compared with competent recent schemes

    Deep learning-based diagnostic system for malignant liver detection

    Get PDF
    Cancer is the second most common cause of death of human beings, whereas liver cancer is the fifth most common cause of mortality. The prevention of deadly diseases in living beings requires timely, independent, accurate, and robust detection of ailment by a computer-aided diagnostic (CAD) system. Executing such intelligent CAD requires some preliminary steps, including preprocessing, attribute analysis, and identification. In recent studies, conventional techniques have been used to develop computer-aided diagnosis algorithms. However, such traditional methods could immensely affect the structural properties of processed images with inconsistent performance due to variable shape and size of region-of-interest. Moreover, the unavailability of sufficient datasets makes the performance of the proposed methods doubtful for commercial use. To address these limitations, I propose novel methodologies in this dissertation. First, I modified a generative adversarial network to perform deblurring and contrast adjustment on computed tomography (CT) scans. Second, I designed a deep neural network with a novel loss function for fully automatic precise segmentation of liver and lesions from CT scans. Third, I developed a multi-modal deep neural network to integrate pathological data with imaging data to perform computer-aided diagnosis for malignant liver detection. The dissertation starts with background information that discusses the proposed study objectives and the workflow. Afterward, Chapter 2 reviews a general schematic for developing a computer-aided algorithm, including image acquisition techniques, preprocessing steps, feature extraction approaches, and machine learning-based prediction methods. The first study proposed in Chapter 3 discusses blurred images and their possible effects on classification. A novel multi-scale GAN network with residual image learning is proposed to deblur images. The second method in Chapter 4 addresses the issue of low-contrast CT scan images. A multi-level GAN is utilized to enhance images with well-contrast regions. Thus, the enhanced images improve the cancer diagnosis performance. Chapter 5 proposes a deep neural network for the segmentation of liver and lesions from abdominal CT scan images. A modified Unet with a novel loss function can precisely segment minute lesions. Similarly, Chapter 6 introduces a multi-modal approach for liver cancer variants diagnosis. The pathological data are integrated with CT scan images to diagnose liver cancer variants. In summary, this dissertation presents novel algorithms for preprocessing and disease detection. Furthermore, the comparative analysis validates the effectiveness of proposed methods in computer-aided diagnosis

    Visual and Camera Sensors

    Get PDF
    This book includes 13 papers published in Special Issue ("Visual and Camera Sensors") of the journal Sensors. The goal of this Special Issue was to invite high-quality, state-of-the-art research papers dealing with challenging issues in visual and camera sensors

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE
    corecore