3,742 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Application of IoT and BEMS to Visualise the Environmental Performance of an Educational Building

    Get PDF
    This paper presents the application of Internet of Things (IoT) Technology and Building Energy Management System (BEMS) within the Marylebone Campus of the University of Westminster, located in central London, to improve the environmental performance of the existing building as well as enhance the learning experience on energy and sustainability. Sixty IoT sensors connected to minicomputers were planned to be deployed within three floors of the building to continuously measure the real-time environmental parameters, such as dry-bulb temperature, relative humidity, illuminance level, carbon dioxide, and sound levels. Experimental workshops were also arranged with undergraduate and post-graduate students at their classrooms using IoT sensors, portable Bluetooth sensors and online questionnaires to increase awareness of the effect of environmental and behavioural changes on energy saving through real-time visualisation. Users’ subjective feedback on their workplace was also collected through Post Occupancy Evaluation (POE) questionnaire surveys. The results show the effectiveness of IoT systems and BEMS in supplying the building users and management with high-resolution, low-cost data acquisition systems highlighting the existing challenges and future scopes. The study also documents the process and the improvement in students’ awareness of environmental and energy performance of their building through IoT data visualizations and POE

    Informal learning evidence in online communities of mobile device enthusiasts

    Get PDF
    This chapter describes a study that investigated the informal learning practices of enthusiastic mobile device owners. Informal learning is far more widespread than is often realized. Livingston (2000) pointed out that Canadian adults spend an average of fifteen hours per week on informal learning activities, more than they spend on formal learning activities. The motivation for these learning efforts generally comes from the individual, not from some outside force such as a school, university, or workplace. Therefore, in the absence of an externally imposed learning framework, informal learners will use whatever techniques,resources, and tools best suit their learning needs and personal preferences. As ownership of mobile technologies becomes increasingly widespread in the western world, it is likely that learners who have access to this technology will use it to support their informal learning efforts. This chapter presents the findings of a study into the various and innovative ways in which PDA and Smartphone users exploit mobile device functionality in their informal learning activities. The findings suggested that mobile device users deploy the mobile, connective, and collaborative capabilities of their devices in a variety of informal learning contexts, and in quite innovative ways. Trends emerged, such as the increasing importance of podcasting and audio and the use of built-in GPS, which may have implications for future studies. Informal learners identified learning activities that could be enhanced by the involvement of mobile technology, and developed methods and techniques that helped them achieve their learning goals

    Innovation in Mobile Learning: A European Perspective

    Get PDF
    In the evolving landscape of mobile learning, European researchers have conducted significant mobile learning projects, representing a distinct perspective on mobile learning research and development. Our paper aims to explore how these projects have arisen, showing the driving forces of European innovation in mobile learning. We propose context as a central construct in mobile learning and examine theories of learning for the mobile world, based on physical, technological, conceptual, social and temporal mobility. We also examine the impacts of mobile learning research on educational practices and the implications for policy. Throughout, we identify lessons learnt from European experiences to date

    Remote Control and Monitoring of Smart Home Facilities via Smartphone with Wi-Fly

    Get PDF
    Due to the widespread ownership of smartphone devices, the application of mobile technologies to enhance the monitoring and control of smart home facilities has attracted much academic attention. This study indicates that tools already in the possession of the end user can be a significant part of the specific context-aware system in the smart home. The behaviour of the system in the context of existing systems will reflect the intention of the client. This model system offers a diverse architectural concept for Wireless Sensor Actuator Mobile Computing in a Smart Home (WiSAMCinSH) and consists of sensors and actuators in various communication channels, with different capacities, paradigms, costs and degree of communication reliability. This paper focuses on the utilization of end users’ smartphone applications to control home devices, and to enable monitoring of the context-aware environment in the smart home to fulfil the needs of the ageing population. It investigates the application of an iPhone to supervise smart home monitoring and control electrical devices, and through this approach, after initial setup of the mobile application, a user can control devices in the smart home from different locations and over various distances

    Emerging technologies for learning (volume 1)

    Get PDF
    Collection of 5 articles on emerging technologies and trend

    Conceptualising mLearning literacy

    Full text link
    Research into the educational application of mobile technologies has increased dramatically in recent years. Much has been written about mobile learning and its various pedagogical practices and issues as well as the theoretical frameworks that have been developed to underpin the studies in the reports. However, little has been written about the literacy associated with learning with mobile devices and whether there is a place for its development in education. This conceptual paper seeks to explore mLearning literacy, the digital literacy associated with learning with mobile devices, and asks the question: What is mLearning literacy and what are its implications for educators? In the paper, the author will argue that fundamental to learning with mobile devices is the need to develop the associated digital literacy in students. The author proposes that being mLearning literate would empower students to learn more independently and more safely when using mobile devices and their applications. Copyright © 2013, IGI Global
    • …
    corecore