1,773 research outputs found

    Bluetooth Mesh Technology for the Joint Monitoring of Indoor Environments and Mobile Device Localization: A Performance Study

    Get PDF
    Bluetooth Mesh is a recent SIG standard enabling the deployment of multi-hop Wireless Sensor Networks (WSNs) over Bluetooth Low Energy (BLE) communication links. The standard introduces many novel and interesting features in the Internet of Things (IoT) domain, such as the seamless integration among sensors and mobile and wearable devices, and the support for a wide range of different IoT application profiles. At the same time, fine-grained assessments of the performance are still needed to understand the potential of the technology. In this paper, we investigate the usage of Bluetooth Mesh solutions for the joint monitoring of indoor spaces and humans. Through the deployment of a test-bed, we evaluate the performance of Bluetooth Mesh WSNs under varying traffic loads and network sizes. In addition, by exploiting the short-range, multi-hop communications, we propose a procedure for the indoor localization of mobile devices and evaluate its accuracy. The results demonstrate that the technology supports reasonable delivery ratio under high traffic loads, however the network and localization performance sharply decreases when increasing the number of hops between the source and destination nodes

    Indoor positioning system survey using BLE beacons

    Get PDF
    This project provides a survey of indoor positioning systems and reports experimental work with Bluetooth Low Energy (BLE) Beacons. A positioning algorithm based on the Received Signal Strength Index (RSSI) from Bluetooth Low Energy signals is proposed for indoor tracking of the position of a drone. Experimental tests for characterization of beacon signals are presented. The application of a Kalman filter to reduce the effect of fluctuations in beacons signals is described

    Multiverse: Mobility pattern understanding improves localization accuracy

    Get PDF
    Department of Computer Science and EngineeringThis paper presents the design and implementation of Multiverse, a practical indoor localization system that can be deployed on top of already existing WiFi infrastructure. Although the existing WiFi-based positioning techniques achieve acceptable accuracy levels, we find that existing solutions are not practical for use in buildings due to a requirement of installing sophisticated access point (AP) hardware or special application on client devices to aid the system with extra information. Multiverse achieves sub-room precision estimates, while utilizing only received signal strength indication (RSSI) readings available to most of today's buildings through their installed APs, along with the assumption that most users would walk at the normal speed. This level of simplicity would promote ubiquity of indoor localization in the era of smartphones.ope

    RSSI Based Indoor Passive Localization for Intrusion Detection and Tracking

    Get PDF
    A real time system for intrusion detection and tracking based on wireless sensor network technology is designed by using the IITH mote which is de- veloped and designed in IIT Hyderabad as the communication module in the network.This paper describes the Device-Free Passive Localization system based on RSSI.The main objective of this paper is to design a DFP Local- ization system that is easily redeployable, recon�gurable, easy to use, and operates in real time. In addition the detection of humans is to be done.The em- bedded intrusion detection algorithm is designed so that it is able to cope with the limited resources, in terms of computational power and available memory space, of the microcontroller unit (MCU) found in the nodes. and various challenges and problem faced during the real test bed deployment and also proposed solutions to overcome them.We presented an alternative algo- rithm based on the minimum Euclidean distance classi�er.our result shows that the localization accuracy of this system is increased when using the proposed algorith

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    Review of state-of-the-art wireless technologies and applications in smart cities

    Get PDF
    There are increasing preferences to employ wireless communication technologies for high mobility, high scalability and low-cost applications in smart city development. This paper gives a brief synopsis of typical wireless technologies in smart city applications and the comparison analysis between them. The trend for smart city wireless technology is also presented. Examples, for several key applications within smart city development (healthcare, smart grid, localization) are studied and current advanced solutions supporting these applications are summarized with futuristic trends and demands are presented
    corecore