11 research outputs found

    Simulation of an electrophotographic halftone reproduction

    Get PDF
    The robustness of three digital halftoning techniques are simulated for a hypothetical electrophotographic laser printer subjected to dynamic environmental conditions over a copy run of one thousand images. Mathematical electrophotographic models have primarily concentrated on solid area reproductions under time-invariant conditions. The models used in this study predict the behavior of complex image distributions at various stages in the electrophotographic process. The system model is divided into seven subsystems: Halftoning, Laser Exposure, Photoconductor Discharge, Toner Development, Transfer, Fusing, and Image Display. Spread functions associated with laser spot intensity, charge migration, and toner transfer and fusing are used to predict the electrophotographic system response for continuous and halftone reproduction. Many digital halftoning techniques have been developed for converting from continuous-tone to binary (halftone) images. The general objective of halftoning is to approximate the intermediate gray levels of continuous tone images with a binary (black-and-white) imaging system. Three major halftoning techniques currently used are Ordered-Dither, Cluster-Dot, and Error Diffusion. These halftoning algorithms are included in the simulation model. Simulation in electrophotography can be used to better understand the relationship between electrophotographic parameters and image quality, and to observe the effects of time-variant degradation on electrophotographic parameters and materials. Simulation programs, written in FORTRAN and SLAM (Simulation Language Alternative Modeling), have been developed to investigate the effects of system degradation on halftone image quality. The programs have been designed for continuous simulation to characterize the behavior or condition of the electrophotographic system. The simulation language provides the necessary algorithms for obtaining values for the variables described by the time-variant equations, maintaining a history of values during the simulation run, and reporting statistical information on time-dependent variables. Electrophotographic variables associated with laser intensity, initial photoconductor surface voltage, and residual voltage are degraded over a simulated run of one thousand copies. These results are employed to predict the degraded electrophotographic system response and to investigate the behavior of the various halftone techniques under dynamic system conditions. Two techniques have been applied to characterize halftone image quality: Tone Reproduction Curves are used to characterize and record the tone reproduction capability of an electrophotographic system over a simulated copy run. Density measurements are collected and statistical inferences drawn using SLAM. Typically the sharpness of an image is characterized by a system modulation transfer function (MTF). The mathematical models used to describe the subsystem transforms of an electrophotographic system involve non-linear functions. One means for predicting this non-linear system response is to use a Chirp function as the input to the model and then to compare the reproduced modulation to that of the original. Since the imaging system is non-linear, the system response cannot be described by an MTF, but rather an Input Response Function. This function was used to characterize the robustness of halftone patterns at various frequencies. Simulated images were also generated throughout the simulation run and used to evaluate image sharpness and resolution. The data, generated from each of the electrophotographic simulation models, clearly indicates that image stability and image sharpness is not influenced by dot orientation, but rather by the type of halftoning operation used. Error-Diffusion is significantly more variable than Clustered-Dot and Dispersed-Dot at low to mid densities. However, Error-Diffusion is significantly less variable than the ordered dither patterns at high densities. Also, images generated from Error-Diffusion are sharper than those generated using Clustered-Dot and Dispersed-Dot techniques, but the resolution capability of each of the techniques remained the same and degraded equally for each simulation run

    Digital halftoning and the physical reconstruction function

    Get PDF
    Originally presented as author's thesis (Ph. D.--Massachusetts Institute of Technology), 1986.Bibliography: p. 397-405."This work has been supported by the Digital Equipement Corporation."by Robert A. Ulichney

    The LLAB model for quantifying colour appearance

    Get PDF
    A reliable colour appearance model is desired by industry to achieve high colour fidelity between images produced using a range of different imaging devices. The aim of this study was to derive a reliable colour appearance model capable of predicting the change of perceived attributes of colour appearance under a wide range of media/viewing conditions. The research was divided into three parts: characterising imaging devices, conducting a psychophysical experiment, and developing a colour appearance model. Various imaging devices were characterised including a graphic art scanner, a Cromalin proofing system, an IRIS ink jet printer, and a Barco Calibrator. For the former three devices, each colour is described by four primaries: cyan (C), magenta (M), yellow (Y), and black (K). Three set of characterisation samples (120 and 31 black printer, and cube data sets) were produced and measured for deriving and testing the printing characterisation models. Four black printer algorithms (BPA), were derived. Each included both forward and reverse processes. A 2nd BPA printing model taking into account additivity failure, grey component replacement (GCR) algorithm gave the most accurate prediction to the characterisation data set than the other BPA models. The PLCC (Piecewise Linear interpolation assuming Constant Chromaticity coordinates) monitor model was also implemented to characterise the Barco monitor. The psychophysical experiment was conducted to compare Cromalin hardcopy images viewed in a viewing cabinet and softcopy images presented on a monitor under a wide range of illuminants (white points) including: D93, D65, D50 and A. Two scaling methods: category judgement and paired comparison, were employed by viewing a pair of images. Three classes of colour models were evaluated: uniform colour spaces, colour appearance models and chromatic adaptation transforms. Six images were selected and processed via each colour model. The results indicated that the BFD chromatic transform gave the most accurate predictions of the visual results. Finally, a colour appearance model, LLAB, was developed. It is a combination of the BFD chromatic transform and a modified version of CIELAB uniform colour space to fit the LUTCRI Colour Appearance Data previously accumulated. The form of the LLAB model is much simpler and its performance is more precise to fit experimental data than those of the other models

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique

    Spectral modeling of a six-color inkjet printer

    Get PDF
    After customizing an Epson Stylus Photo 1200 by adding a continuous-feed ink system and a cyan, magenta, yellow, black, orange and green ink set, a series of research tasks were carried out to build a full spectral model of the printers output. First, various forward printer models were tested using the fifteen two color combinations of the printer. Yule- Nielsen-spectral-Neugebauer (YNSN) was selected as the forward model and its accuracy tested throughout the colorant space. It was found to be highly accurate, performing as well as a more complex local, cellular version. Next, the performance of nonlinear optimization-routine algorithms were evaluated for their ability to efficiently invert the YNSN model. A quasi-Newton based algorithm designed by Davidon, Fletcher and Powell (DFP) was found to give the best performance when combined with starting values produced from the non-negative least squares fit of single-constant Kubelka- Munk. The accuracy of the inverse model was tested and different optimization objective functions were evaluated. A multistage objective function based on minimizing spectral RMS error and then colorimetric error was found to give highly accurate matches with low metameric potential. Finally, the relationship between the number of printing inks and the ability to eliminate metamerism was explored
    corecore