4 research outputs found

    Engineering Principles

    Get PDF
    Over the last decade, there has been substantial development of welding technologies for joining advanced alloys and composites demanded by the evolving global manufacturing sector. The evolution of these welding technologies has been substantial and finds numerous applications in engineering industries. It is driven by our desire to reverse the impact of climate change and fuel consumption in several vital sectors. This book reviews the most recent developments in welding. It is organized into three sections: “Principles of Welding and Joining Technology,” “Microstructural Evolution and Residual Stress,” and “Applications of Welding and Joining.” Chapters address such topics as stresses in welding, tribology, thin-film metallurgical manufacturing processes, and mechanical manufacturing processes, as well as recent advances in welding and novel applications of these technologies for joining different materials such as titanium, aluminum, and magnesium alloys, ceramics, and plastics

    Welding Processes

    Get PDF
    Despite the wide availability of literature on welding processes, a need exists to regularly update the engineering community on advancements in joining techniques of similar and dissimilar materials, in their numerical modeling, as well as in their sensing and control. In response to InTech's request to provide undergraduate and graduate students, welding engineers, and researchers with updates on recent achievements in welding, a group of 34 authors and co-authors from 14 countries representing five continents have joined to co-author this book on welding processes, free of charge to the reader. This book is divided into four sections: Laser Welding; Numerical Modeling of Welding Processes; Sensing of Welding Processes; and General Topics in Welding

    Research Activities of JWRI

    Full text link
    Abstracts of the Article

    Recent Developments in Non-conventional Welding of Materials

    Get PDF
    Welding is a technological field that has some of the greatest impact on many industries, such as automotive, aerospace, energy production, electronics, the health sector, etc. Welding technologies are currently used to connect the most diverse materials, from metallic alloys to polymers, composites, or even biological tissues. Despite the relevance and wide application of traditional welding technologies, these processes do not meet the demanding requirements of some industries. This has driven strong research efforts in the field of non-conventional welding processes. This Special Issue presents a sample of the most recent developments in the non-conventional welding of materials, which will drive the design of future industrial solutions with increased efficiency and sustainability
    corecore