35 research outputs found

    Recursive subdivision algorithms for curve and surface design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this thesis, the author studies recursIve subdivision algorithms for curves and surfaces. Several subdivision algorithms are constructed and investigated. Some graphic examples are also presented. Inspired by the Chaikin's algorithm and the Catmull-Clark's algorithm, some non-uniform schemes, the non-uniform corner cutting scheme and the recursive subdivision algorithm for non-uniform B-spline curves, are constructed and analysed. The adapted parametrization is introduced to analyse these non-uniform algorithms. In order to solve the surface interpolation problem, the Dyn-Gregory-Levin's 4-point interpolatory scheme is generalized to surfaces and the 10-point interpolatory subdivision scheme for surfaces is formulated. The so-called Butterfly Scheme, which was firstly introduced by Dyn, Gregory Levin in 1988, is just a special case of the scheme. By studying the Cross-Differences of Directional Divided Differences, a matrix approach for analysing uniform subdivision algorithms for surfaces is established and the convergence of the 10-point scheme over both uniform and non-uniform triangular networks is studied. Another algorithm, the subdivision algorithm for uniform bi-quartic B-spline surfaces over arbitrary topology is introduced and investigated. This algorithm is a generalization of Doo-Sabin's and Catmull-Clark's algorithms. It produces uniform Bi-quartic B-spline patches over uniform data. By studying the local subdivision matrix, which is a circulant, the tangent plane and curvature properties of the limit surfaces at the so-called Extraordinary Points are studied in detail.The Chinese Educational Commission and The British Council (SBFSS/1987

    08221 Abstracts Collection -- Geometric Modeling

    Get PDF
    From May 26 to May 30 2008 the Dagstuhl Seminar 08221 ``Geometric Modeling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    5-axis double-flank CNC machining of spiral bevel gears via custom-shaped milling tools -- Part I: modeling and simulation

    Get PDF
    A new category of 5-axis flank computer numerically controlled (CNC) machining, called \emph{double-flank}, is presented. Instead of using a predefined set of milling tools, we use the shape of the milling tool as a free parameter in our optimization-based approach and, for a given input free-form (NURBS) surface, compute a custom-shaped tool that admits highly-accurate machining. Aimed at curved narrow regions where the tool may have double tangential contact with the reference surface, like spiral bevel gears, the initial trajectory of the milling tool is estimated by fitting a ruled surface to the self-bisector of the reference surface. The shape of the tool and its motion then both undergo global optimization that seeks high approximation quality between the input free-form surface and its envelope approximation, fairness of the motion and the tool, and prevents overcutting. That is, our double-flank machining is meant for the semi-finishing stage and therefore the envelope of the motion is, by construction, penetration-free with the references surface. Our algorithm is validated by a commercial path-finding software and the prototype of the tool for a specific gear model is 3D printed.RYC-2017-22649 BERC 2014-201

    Parametric Geometry Creation Methodology and Utility for the Stars Cfd Analysis Package

    Get PDF
    Differing methodologies and approaches for the creation of STARS CFD test case geometry models and support files were examined. The current methods for model geometry creation have been identified by past researchers as an area needing improvement. Methods of geometric data transfer, storage, and processing were examined for their applicability and usefulness in the STARS solution procedure. A CFD model creation utility was then developed for STARS. The utility converts existing CAD geometry into the set of files needed for a general CFD analysis. A graphical user interface was also created in order to aid the user in the specification of geometric, meshing, and solution parameters.Mechanical & Aerospace Engineerin

    A Universal Parametrization in B-Spline Curve and Surface Interpolation and Its Performance Evaluation.

    Get PDF
    The choice of a proper parametrization method is critical in curve and surface fitting using parametric B-splines. Conventional parametrization methods do not work well partly because they are based only on the geometric properties of given data points such as the distances between consecutive data points and the angles between consecutive line segments. The resulting interpolation curves don\u27t look natural and they are often not affine invariant. The conventional parametrization methods don\u27t work well for odd orders k. If a data point is altered, the effect is not limited locally at all with these methods. The localness property with respect to data points is critical in interactive modeling. We present a new parametrization based on the nature of the basis functions called B-splines. It assigns to each data point the parameter value at which the corresponding B-spline N\sb{ik}(t) is maximum. The new method overcomes all four problems mentioned above; (1) It works well for all orders k, (2) it generates affine invariant curves, (3) the resulting curves look more natural, in general, and (4) it has the semi-localness property with respect to data points. The new method is also computationally more efficient and the resulting curve has more regular behavior of the curvature. Fairness evaluation and knot removal are performed on curves obtained from various parametrizations. The results also show that the new parametrization is superior. Fairness is evaluated in terms of total curvature, total length, and curvature plot. The curvature plots are looking natural for the curves obtained from the new parametrization. For the curves obtained from the new method, knot removal is able to provide with the curves which are very close to the original curves. A more efficient and effective method is also presented for knot removal in B-spline curve. A global norm is utilized for approximation unlike other methods which are using some local norms. A geometrical view makes the computation more efficient

    Blending techniques in Curve and Surface constructions

    Get PDF
    Source at https://www.geofo.no/geofoN.html. <p

    Intelligent Freeform Deformation for LED Illumination Optics

    Get PDF
    In freeform optics, the optimization is limited due to large number of parameters present in it. This limitation was overcome by a technique known as optimization using freeform deformation (OFFD). Though this technique proved to work well, it has left many challenges to the optical designer. These challenges are solved by providing mathematical design techniques. This implementation transformed the OFFD into an intelligent tool replacing the optical designer\u27s efforts during the design process

    A code for surface modeling and grid generation coupled to a panel method for aerodynamic configuration design

    Get PDF
    An integrated platform has been developed which features a geometric, a grid generation and an aerodynamic analysis module. The main intent is to execute a quick though reliable preliminary aerodynamic analysis on a generic complex aerodynamic configuration and, at the same time, provide a mean of exporting the defined geometry or grid to leading CAE/CAD, meshing and analysis softwares, for deep detail modifications or more accurate, although time consuming, analysis. In the geometric module, the process of shape definition is easily and intuitively achieved with the aid of specific features and tools. The geometric description relies on NURBS, a flexible, accurate and efficient parametric form. Once the configuration has been defined, the user is ready to move on the grid generation module, or to export it to IGES standard format in order to use CAE/CAD, meshing or aerodynamic analysis programs. The grid generation module is capable to build structured or unstructured meshes. Both of the processes are automatized, even if the user can easily set and control grid parameters. The structured grid generator is oriented to LaWGS description standard, while the unstructured grid can be exported to different formats. The user is now ready to launch Pan Air, a panel method, as the aerodynamic solver. The preprocessor and postprocessor aid to the definition of the flow parameters and to the graphical visualization of the results. One of the strength of this code is the user friendly GUI organization of each module: the user is aided throughout all the steps. Besides this, every module relies on fast computational algorithms to speed up the overall process. For all these reasons, this code has a natural lean to be used in pair with an optimization tool
    corecore