2,350 research outputs found

    Diabetes Prediction Using Artificial Neural Network

    Get PDF
    Diabetes is one of the most common diseases worldwide where a cure is not found for it yet. Annually it cost a lot of money to care for people with diabetes. Thus the most important issue is the prediction to be very accurate and to use a reliable method for that. One of these methods is using artificial intelligence systems and in particular is the use of Artificial Neural Networks (ANN). So in this paper, we used artificial neural networks to predict whether a person is diabetic or not. The criterion was to minimize the error function in neural network training using a neural network model. After training the ANN model, the average error function of the neural network was equal to 0.01 and the accuracy of the prediction of whether a person is diabetics or not was 87.3

    Differential sequential patterns supporting insulin therapy of new-onset type 1 diabetes

    Get PDF
    Background: In spite of numerous research efforts on supporting the therapy of diabetes mellitus, the subject still involves challenges and creates active interest among researchers. In this paper, a decision support tool is presented for setting insulin therapy in new-onset type 1 diabetes. Methods: The concept of differential sequential patterns (DSPs) is introduced with the aim of representing deviations in the patient's blood glucose level (BGL) and the amount of insulin injections administered. The decision support tool is created using data mining algorithms for discovering sequential patterns. Results: By using the DSPs, it is possible to support the physician's decisionmaking concerning changing the treatment (i.e., whether to increase or decrease the insulin dosage). The other contributions of the paper are an algorithm for generating DSPs and a new method for evaluating nocturnal glycaemia. The proposed qualitative evaluation of nocturnal glycaemia improves the generalization capabilities of the DSPs. Conclusions: The usefulness of the proposed approach was evident in the results of experiments in which juvenile diabetic patients actual data were used. It was confirmed that the proposed DSPs can be used to guide the therapy of numerous juvenile patients with type 1 diabetes

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations
    corecore