3,356 research outputs found

    Application of a Mamdani-type fuzzy rule-based system to segment periventricular cerebral veins in susceptibility-weighted images

    Get PDF
    This paper presents an algorithm designed to segment veins in the periventricular region of the brain in susceptibility-weighted magnetic resonance images. The proposed algorithm is based on a Mamdani-type fuzzy rule-based system that enables enhancement of veins within periventricular regions of interest as the first step. Segmentation is achieved after determining the cut-off value providing the best trade-off between sensitivity and specificity to establish the suitability of each pixel to belong to a cerebral vein. Performance of the algorithm in susceptibility-weighted images acquired in healthy volunteers showed very good segmentation, with a small number of false positives. The results were not affected by small changes in the size and location of the regions of interest. The algorithm also enabled detection of differences in the visibility of periventricular veins between healthy subjects and multiple sclerosis patients. © Springer International Publishing Switzerland 2016.Postprint (author's final draft

    Segmentation Of Retinal Blood Vessels Using A Novel Fuzzy Logic Algorithm

    Get PDF
    In this work, a rule-based method is presented for blood vessel segmentation in digital retinal images. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. Diabetic retinopathy is the most common diabetic eye disease and a leading cause of blindness. Diagnosis of diabetic retinopathy at an early stage can be done through the segmentation of the blood vessels of retina. Many studies have been carried out in the last decade in order to obtain accurate blood vessel segmentation in retinal images including supervised and rule-based methods. This method uses eight feature vectors for each pixel. These features are means and medians of intensity values of pixel itself, first and second nearest neighbor at four directions. Features are used in fuzzy logic algorithm as crisp input. The final segmentation is obtained using a thresholding method. The method was tested on the publicly available database DRIVE and its results are compared with distinguished published methods. Our method achieved an average accuracy of 93.82% and an area under the receiver operating characteristic curve of 94.19% for DRIVE database. Our results demonstrated an average sensitivity of 72.28% and a specificity of 97.04%. The calculated sensitivity and specificity values for DRIVE database also state that the proposed segmentation method is effective and robust

    Retinal blood vessel localization to expedite PDR diagnosis

    Get PDF
    Ophthalmologist relies on the retinal fundus image segmentation for accurate diagnosis of Diabetic Retinopathy caused due to prolonged deterioration in retinal blood vessels. Blood vessel and optical disc localization determines the vascular alterations helpful in identifying retinal diseases with accurate identification of pathologies like microaneurysms and exudates. This work comprises evaluation of proposed Optical Disc Segmentation and blood vessel localization techniques followed by a statistical analysis using three fractal dimensions; box count, information and correlation. Fractal dimensions explored are beneficial for Proliferative Diabetic Retinopathy (PDR) diagnosis as its value for vascular structures increases with increasing level of PDR. Two benchmark fundus image databases, DRIVE and STARE were evaluated by utilizing shape and fractal features for performance validation and average accuracies of 96.79% and 95.68% were achieved for extracted blood vessels using proposed approach

    EKSTRAKSI FITUR PEMBULUH DARAH CITRA FUNDUS RETINA MENGGUNAKAN FUZZY LOGIC

    Get PDF
    Ekstraksi pola pembuluh darah retina dapat dimanfaatkan dalam sistem biometrik sebagai otentikasi keamanan. Citra hasil ekstraksi pola pembuluh darah retina dapat dimasukkan ke dalam fitur untuk identifikasi sistem biometrik. Salah satu metode yang dapat dilakukan untuk melakukan segmentasi pembuluh darah retina adalah metode fuzzy logic. Pada penelitian ini, dilakukan ekstraksi pembuluh darah citra fundus retina menggunakan implementasi fuzzy logic. Peneliti menggunakan sejumlah 20 citra fundus yang diperoleh dari dataset DRIVE berformat .tif. Proses segmentasi dimulai dengan tahap preprocessing yang berisikan konversi citra menjadi grayscale, median filtering, perataan histogram CLAHE, dan eliminasi optic disc, kemudian dilanjutkan dengan pembuatan fuzzy inference system. Tahapan preprocessing yang digunakan merupakan hasil dari rangkaian uji coba peneliti dengan melihat hasil dari setiap uji coba yang dilakukan, sehingga mendapatkan citra yang menonjolkan fitur pembuluh darah dan menghilangkan noise atau fitur retina yang tidak diperlukan seperti optic disc. Uji coba segmentasi dilakukan pada Polyspace R2020a sebagai media untuk menjalankan program mulai dari preprocessing hingga segmentasi menggunakan fuzzy logic. Keluaran dari segmentasi ini berupa citra segmentasi hasil dari metode fuzzy logic dan crisp value. Metode fuzzy logic berhasil diterapkan untuk melakukan ekstraksi pembuluh darah retina dan menghasilkan crisp value. Hasil penelitian ini diharapkan dapat digunakan sebagai salah satu fitur sistem identifikasi biometrik retina

    Automatic Blood Vessel Extraction of Fundus Images Employing Fuzzy Approach

    Get PDF
    Diabetic Retinopathy is a retinal vascular disease that is characterized by progressive deterioration of blood vessels in the retina and is distinguished by the appearance of different types of clinical lesions like microaneurysms, hemorrhages, exudates etc. Automated detection of the lesions plays significant role for early diagnosis by enabling medication for the treatment of severe eye diseases preventing visual loss. Extraction of blood vessels can facilitate ophthalmic services by automating computer aided screening of fundus images. This paper presents blood vessel extraction algorithms with ensemble of pre-processing and post-processing steps which enhance the image quality for better analysis of retinal images for automated detection. Extensive performance based evaluation of the proposed approaches is done over four databases on the basis of statistical parameters. Comparison of both blood vessel extraction techniques on different databases reveals that fuzzy based approach gives better results as compared to Kirsch’s based algorithm. The results obtained from this study reveal that 89% average accuracy is offered by the proposed MBVEKA and 98% for proposed BVEFA

    Hybrid mamdani fuzzy rules and convolutional neural networks for analysis and identification of animal images

    Get PDF
    Accurate, fast, and automatic detection and classification of animal images is challenging, but it is much needed for many real-life applications. This paper presents a hybrid model of Mamdani Type-2 fuzzy rules and convolutional neural networks (CNNs) applied to identify and distinguish various animals using different datasets consisting of about 27,307 images. The proposed system utilizes fuzzy rules to detect the image and then apply the CNN model for the object’s predicate category. The CNN model was trained and tested based on more than 21,846 pictures of animals. The experiments’ results of the proposed method offered high speed and efficiency, which could be a prominent aspect in designing image-processing systems based on Type 2 fuzzy rules characterization for identifying fixed and moving images. The proposed fuzzy method obtained an accuracy rate for identifying and recognizing moving objects of 98% and a mean square error of 0.1183464 less than other studies. It also achieved a very high rate of correctly predicting malicious objects equal to recall = 0.98121 and a precision rate of 1. The test’s accuracy was evaluated using the F1 Score, which obtained a high percentage of 0.99052

    The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: A review

    Get PDF
    This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications
    corecore