21,591 research outputs found

    Functional Imaging of Autonomic Regulation: Methods and Key Findings.

    Get PDF
    Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function

    Persons Versus Brains: Biological Intelligence in Human Organisms

    Get PDF
    I go deep into the biology of the human organism to argue that the psychological features and functions of persons are realized by cellular and molecular parallel distributed processing networks dispersed throughout the whole body. Persons supervene on the computational processes of nervous, endocrine, immune, and genetic networks. Persons do not go with brains

    The Informational Model of Consciousness: Mechanisms of Embodiment/Disembodiment of Information

    Get PDF
    It was shown recently that information is the central concept which it is to be considered to understand consciousness and its properties. Arguing that consciousness is a consequence of the operational activity of the informational system of the human body, it was shown that this system is composed by seven informational components, reflected in consciousness by corresponding cognitive centers. It was argued also that consciousness can be connected to the environment not only by the common senses, but also by a special connection pole to the bipolar properties of the universe, allowing to explain the associated phenomena of the near-death experiences and other special phenomena. Starting from the characteristics of this model, defined as the Informational Model of Consciousness and to complete the info-communication panorama, in this paper it is analyzed the info-connectivity of the informational system with the body itself. The brain areas where the activity of each informational component are identified, and a definition of consciousness in terms of information is proposed. As the electrical connectivity by means of the nervous system was already proved, allowing the application of the analysis and developing tools of the information science, a particular attention is paid to the non-electrical mechanisms implied in the internal communication. For this, it is shown that the key mechanisms consists in embodiment/disembodiment processes of information during the inter and intra communication of the cells. This process can be modeled also by means of, and in correlation with specific concepts of the science and technology of information, referred to network communication structures, and is represented by epigenetic mechanisms, allowing the acquired trait transmission to the offspring generation. From the perspective of the informational model of consciousness, the human organism appears therefore as a dynamic reactive informational system, actuating in correlation with matter for adaptation, by embodiment/disembodiment processes of information

    Informational Mode of the Brain Operation and Consciousness as an Informational Related System

    Get PDF
    Introduction: the objective of the investigation is to analyse the informational operating-mode of the brain and to extract conclusions on the structure of the informational system of the human body and consciousness. Analysis: the mechanisms and processes of the transmission of information in the body both by electrical and non-electrical ways are analysed in order to unify the informational concepts and to identify the specific essential requirements supporting the life. It is shown that the electrical transmission can be described by typical YES/NO (all or nothing) binary units as defined by the information science, while the inter and intra cell communication, including within the synaptic junction, by mechanisms of embodiment/disembodiment of information. The virtual received or operated information can be integrated in the cells as matter-related information, with a maximum level of integration as genetically codified info. Therefore, in terms of information, the human appears as a reactive system changing information with the environment and between inner informational subsystems which are: the centre of acquisition and storing of information (acquired data), the centre of decision and command (decision), the info-emotional system (emotions), the maintenance informational system (matter absorption/desorption/distribution), the genetic transmission system (reproduction) and info-genetic generator (genetically assisted body evolution). The dedicated areas and components of the brain are correlated with such systems and their functions are specified. Result: the corresponding cognitive centres projected into consciousness are defined and described according to their specific functions. The cognitive centres, suggestively named to appropriately include their main characteristics are detected at the conscious level respectively as: memory, decisional operation (attitude), emotional state, power/energy status and health, associativity and offspring formation, inherited predispositions, skills and mentality. The near-death and religious experiences can be explained by an Info-Connection pole. Conclusion: consciousness could be fully described and understood in informational terms
    • …
    corecore