26,537 research outputs found

    Planar Graph Blocking for External Searching

    Full text link

    Best-first heuristic search for multicore machines

    Get PDF
    To harness modern multicore processors, it is imperative to develop parallel versions of fundamental algorithms. In this paper, we compare different approaches to parallel best-first search in a shared-memory setting. We present a new method, PBNF, that uses abstraction to partition the state space and to detect duplicate states without requiring frequent locking. PBNF allows speculative expansions when necessary to keep threads busy. We identify and fix potential livelock conditions in our approach, proving its correctness using temporal logic. Our approach is general, allowing it to extend easily to suboptimal and anytime heuristic search. In an empirical comparison on STRIPS planning, grid pathfinding, and sliding tile puzzle problems using 8-core machines, we show that A*, weighted A* and Anytime weighted A* implemented using PBNF yield faster search than improved versions of previous parallel search proposals

    SICStus MT - A Multithreaded Execution Environment for SICStus Prolog

    Get PDF
    The development of intelligent software agents and other complex applications which continuously interact with their environments has been one of the reasons why explicit concurrency has become a necessity in a modern Prolog system today. Such applications need to perform several tasks which may be very different with respect to how they are implemented in Prolog. Performing these tasks simultaneously is very tedious without language support. This paper describes the design, implementation and evaluation of a prototype multithreaded execution environment for SICStus Prolog. The threads are dynamically managed using a small and compact set of Prolog primitives implemented in a portable way, requiring almost no support from the underlying operating system

    Conjoined Events

    Get PDF
    Many existing synchronous message-passing systems support choice: engaging in one event XOR another. This paper introduces the AND operator that allows a process to engage in multiple events together (one AND one more AND another; all conjoined), engaging in each event only if it can atomically engage in all the conjoined events. We demonstrate using several examples that this operator supports new, more ?exible models of programming. We show that the AND operator allows the behaviour of processes to be expressed in local rules rather than system-wide constructs. We give an optimised implementation of the AND operator and explore the performance effect on standard communications of supporting this new operator

    Ferromagnetic resonance in Ï”\epsilon-Co magnetic composites

    Full text link
    We investigate the electromagnetic properties of assemblies of nanoscale Ï”\epsilon-cobalt crystals with size range between 5 nm to 35 nm, embedded in a polystyrene (PS) matrix, at microwave (1-12 GHz) frequencies. We investigate the samples by transmission electron microscopy (TEM) imaging, demonstrating that the particles aggregate and form chains and clusters. By using a broadband coaxial-line method, we extract the magnetic permeability in the frequency range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance with respect to an externally applied magnetic field. We find that the zero-magnetic field ferromagnetic resonant peak shifts towards higher frequencies at finite magnetic fields, and the magnitude of complex permeability is reduced. At fields larger than 2.5 kOe the resonant frequency changes linearly with the applied magnetic field, demonstrating the transition to a state in which the nanoparticles become dynamically decoupled. In this regime, the particles inside clusters can be treated as non-interacting, and the peak position can be predicted from Kittel's ferromagnetic resonance theory for non-interacting uniaxial spherical particles combined with the Landau-Lifshitz-Gilbert (LLG) equation. In contrast, at low magnetic fields this magnetic order breaks down and the resonant frequency in zero magnetic field reaches a saturation value reflecting the interparticle interactions as resulting from aggregation. Our results show that the electromagnetic properties of these composite materials can be tuned by external magnetic fields and by changes in the aggregation structure.Comment: 14 pages, 13 figure

    On the design and implementation of broadcast and global combine operations using the postal model

    Get PDF
    There are a number of models that were proposed in recent years for message passing parallel systems. Examples are the postal model and its generalization the LogP model. In the postal model a parameter λ is used to model the communication latency of the message-passing system. Each node during each round can send a fixed-size message and, simultaneously, receive a message of the same size. Furthermore, a message sent out during round r will incur a latency of hand will arrive at the receiving node at round r + λ - 1. Our goal in this paper is to bridge the gap between the theoretical modeling and the practical implementation. In particular, we investigate a number of practical issues related to the design and implementation of two collective communication operations, namely, the broadcast operation and the global combine operation. Those practical issues include, for example, 1) techniques for measurement of the value of λ on a given machine, 2) creating efficient broadcast algorithms that get the latency hand the number of nodes n as parameters and 3) creating efficient global combine algorithms for parallel machines with λ which is not an integer. We propose solutions that address those practical issues and present results of an experimental study of the new algorithms on the Intel Delta machine. Our main conclusion is that the postal model can help in performance prediction and tuning, for example, a properly tuned broadcast improves the known implementation by more than 20%
    • 

    corecore