3,448 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Analysis of adaptive algorithms for an integrated communication network

    Get PDF
    Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes

    Dynamic routing optimization using traffic prediction

    Get PDF
    In this dissertation, a new efficient routing maintenance algorithm, called Predicting of Future Load-based Routing (PFLR), is introduced for optimizing the routing performance in IP-based networks. The main idea of PFLR algorithm is combing the predicted link load with the current link load with an effective method to optimize the link weights and so reduce the network congestions. Another research objective is introducing a new efficient Traffic Engineering (TE) algorithm, called Prediction-based Decentralized Routing (PDR) algorithm, which is fully decentralized and self-organized approach

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Reinforcement learning for resource allocation in LEO satellite networks

    No full text
    Published versio

    Improved learning automata applied to routing in multi-service networks

    Get PDF
    Multi-service communications networks are generally designed, provisioned and configured, based on source-destination user demands expected to occur over a recurring time period. However due to network users' actions being non-deterministic, actual user demands will vary from those expected, potentially causing some network resources to be under- provisioned, with others possibly over-provisioned. As actual user demands vary over the recurring time period from those expected, so the status of the various shared network resources may also vary. This high degree of uncertainty necessitates using adaptive resource allocation mechanisms to share the finite network resources more efficiently so that more of actual user demands may be accommodated onto the network. The overhead for these adaptive resource allocation mechanisms must be low in order to scale for use in large networks carrying many source-destination user demands. This thesis examines the use of stochastic learning automata for the adaptive routing problem (these being adaptive, distributed and simple in implementation and operation) and seeks to improve their weakness of slow convergence whilst maintaining their strength of subsequent near optimal performance. Firstly, current reinforcement algorithms (the part causing the automaton to learn) are examined for applicability, and contrary to the literature the discretised schemes are found in general to be unsuitable. Two algorithms are chosen (one with fast convergence, the other with good subsequent performance) and are improved through automatically adapting the learning rates and automatically switching between the two algorithms. Both novel methods use local entropy of action probabilities for determining convergence state. However when the convergence speed and blocking probability is compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found to be superior. A novel re-application of learning automata to the routing problem is therefore proposed: using link utilisation levels instead of call acceptance or packet delay. Learning automata now return a lower blocking probability than the dynamic shortest-path based scheme under realistic loading levels, but still suffer from a significant number of convergence iterations. Therefore the final improvement is to combine both learning automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking probability of this novel routing algorithm is superior to either algorithm, even when using trend user demands
    • …
    corecore