740 research outputs found

    Towards Secure Blockchain-enabled Internet of Vehicles: Optimizing Consensus Management Using Reputation and Contract Theory

    Full text link
    In Internet of Vehicles (IoV), data sharing among vehicles is essential to improve driving safety and enhance vehicular services. To ensure data sharing security and traceability, highefficiency Delegated Proof-of-Stake consensus scheme as a hard security solution is utilized to establish blockchain-enabled IoV (BIoV). However, as miners are selected from miner candidates by stake-based voting, it is difficult to defend against voting collusion between the candidates and compromised high-stake vehicles, which introduces serious security challenges to the BIoV. To address such challenges, we propose a soft security enhancement solution including two stages: (i) miner selection and (ii) block verification. In the first stage, a reputation-based voting scheme for the blockchain is proposed to ensure secure miner selection. This scheme evaluates candidates' reputation by using both historical interactions and recommended opinions from other vehicles. The candidates with high reputation are selected to be active miners and standby miners. In the second stage, to prevent internal collusion among the active miners, a newly generated block is further verified and audited by the standby miners. To incentivize the standby miners to participate in block verification, we formulate interactions between the active miners and the standby miners by using contract theory, which takes block verification security and delay into consideration. Numerical results based on a real-world dataset indicate that our schemes are secure and efficient for data sharing in BIoV.Comment: 12 pages, submitted for possible journal publicatio

    Blockchain Application on the Internet of Vehicles (IoV)

    Full text link
    With the rapid development of the Internet of Things (IoT) and its potential integration with the traditional Vehicular Ad-Hoc Networks (VANETs), we have witnessed the emergence of the Internet of Vehicles (IoV), which promises to seamlessly integrate into smart transportation systems. However, the key characteristics of IoV, such as high-speed mobility and frequent disconnections make it difficult to manage its security and privacy. The Blockchain, as a distributed tamper-resistant ledge, has been proposed as an innovative solution that guarantees privacy-preserving yet secure schemes. In this paper, we review recent literature on the application of blockchain to IoV, in particular, and intelligent transportation systems in general

    A Review of Research on Privacy Protection of Internet of Vehicles Based on Blockchain

    Get PDF
    Numerous academic and industrial fields, such as healthcare, banking, and supply chain management, are rapidly adopting and relying on blockchain technology. It has also been suggested for application in the internet of vehicles (IoV) ecosystem as a way to improve service availability and reliability. Blockchain offers decentralized, distributed and tamper-proof solutions that bring innovation to data sharing and management, but do not themselves protect privacy and data confidentiality. Therefore, solutions using blockchain technology must take user privacy concerns into account. This article reviews the proposed solutions that use blockchain technology to provide different vehicle services while overcoming the privacy leakage problem which inherently exists in blockchain and vehicle services. We analyze the key features and attributes of prior schemes and identify their contributions to provide a comprehensive and critical overview. In addition, we highlight prospective future research topics and present research problems

    SCTSC: A Semicentralized Traffic Signal Control Mode With Attribute-Based Blockchain in IoVs

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordAssisting traffic control is one of the most important applications on the Internet of Vehicles (IoVs). Traffic information provided by vehicles is desired since drivers or vehicle sensors are sensitive in perceiving or detecting nuances on roads. However, the availability and privacy preservation of this information are critical while conflicted with each other in the vehicular communication. In this paper, we propose a semicentralized mode with attribute-based blockchain in IoVs to balance the tradeoff between the availability and the privacy preservation. In this mode, a method of control-by-vehicles is used to control signals of traffic lights to increase traffic efficiency. Users are grouped their attributes such as locations and directions before starting the communication. The users reach an agreement on determining a temporary signal timing by interacting with each other without leaking privacy. Final decisions are verifiable to all users, even if they have no a priori agreement and processes of consensus. The mode not only achieves the aim of privacy preservation but also supports responsibility investigation for historical agreements via ciphertext-policy attribute-based encryption (CP-ABE) and blockchain technology. Extensive experimental results demonstrated that our mode is efficient and practical.National Key R&D Program of ChinaNatural Science Foundation of ChinaFundamental Research Funds for the Central Universities of Chin

    Traceable and authenticated key negotiations via blockchain for vehicular communications

    Get PDF
    While key negotiation schemes, such as those based on Diffie–Hellman, have been the subject of ongoing research, designing an efficient and security scheme remains challenging. In this paper, we propose a novel key negotiation scheme based on blockchain, which can be deployed in blockchain-enabled contexts such as data sharing or facilitating electric transactions between vehicles (e.g., unmanned vehicles). We propose three candidates for flexible selection, namely, key exchanges via transaction currency values through value channels (such as the amount in transactions), automated key exchanges through static scripts,and dynamic scripts, which can not only guarantee key availability with timeliness but also defend against MITM (man-in-the-middle) attacks, packet-dropping attacks, and decryption failure attacks

    A Decentralized Trust Management System for Intelligent Transportation Environments

    Get PDF
    Commercialized 5G technology will provide reliable and efficient connectivity of motor vehicles that could support the dissemination of information under an intelligent transportation system. However, such service still suffers from risks or threats due to malicious content producers. The traditional public key infrastructure (PKI) cannot restrain such untrusted but legitimate publishers. Therefore, a trust-based service management mechanism is required to secure information dissemination. The issue of how to achieve a trust management model becomes a key problem in the situation. This paper proposes a novel prototype of the decentralized trust management system (DTMS) based on blockchain technologies. Compared with the conventional and centralized trust management system, DTMS adopts a decentralized consensus-based trust evaluation model and a blockchain-based trust storage system, which provide a transparent evaluation procedure and irreversible storage of trust credits. Moreover, the proposed trust model improves blockchain efficiency by only allowing trusted nodes participating in the validation and consensus process. Additionally, the designed system creatively applies a trusted execution environment (TEE) to secure the trust evaluation process together with an incentive model that is used to stimulate more participation and penalize malicious behaviours. Finally, to evaluate our new design prototype, both numerical analysis and practical experiments are implemented for performance evaluation

    Blockchain-enabled capabilities in transport operations: an overview of the literature

    Get PDF
    The blockchain was initially developed for use in the banking sector. However, over time, different areas of knowledge have adopted these technologies, including transportation operations. This use of blockchain in the transport sector is mainly due to the ability of this technology to enable the data generated by these activities to be reliable. In addition to aspects related to data immutability, blockchain enables greater data privacy, as well as making it possible for the data control process to be decentralized. In this sense, it was carried out a systematic literature review (RSL) to identify the general publications panorama on the topic, and to identify the capabilities enabled by the blockchain in the context of transportation operations. RSL has great potential to make it possible to deepen the literature on a given topic. The analysis of the RSL results included the realization of two stages. The first step consisted of a quantitative analysis of data from a sample of 50 articles, to identify this research field about the distribution by journal, year, and author. This first step enabled a general analysis of the field of study on the use of blockchain in transportation. The second stage consisted of a qualitative analysis of the ten most relevant articles in this field of study. In this way, it was possible to understand more about the use of blockchain in transport operations, as well as to identify seven capabilities enabled by the blockchain. These capabilities represent abilities that blockchain technology allows the transport sector today, demonstrating the importance of its use, as well as of study
    • …
    corecore