3,168 research outputs found

    Using Blockchain Technology for The Organ Procurement and Transplant Network

    Get PDF
    The organ donation system in the United States is centralized and difficult to audit by the general public. This centralized approach may lead to data integrity issues in the future. The Organ Procurement and Transplant Network (OPTN) was built and maintained by a non-governmental organization called the United Network for Organ Sharing (UNOS) under its proprietary UNet(SM) umbrella platform. This platform is made up of proprietary closed source software and does not provide the general public easy access to the organ transplant data for auditing. This study investigates the feasibility, challenges, and advantages of a blockchain-based OPTN. A prototype of a blockchain-based OPTN was created using the Hyperledger Fabric framework. The policies and guidelines issued by the United States Department of Health and Human Services for UNOS and the OPTN were used as the basis of this prototype. Four factors were identified to have a direct effect on the performance of this system, viz. max batch time out, max block size, endorsement policy, and transaction rate. Additionally, two variants of the blockchain chaincode were also developed. The first variant performed the organ-candidate matching inside the blockchain (Scheme A), and the second variant performed it outside the blockchain (Scheme B). Analysis of these data showed that Scheme A outperformed Scheme B in all experiments for write-operations. However, the read operations remained unaffected by any of the experiment variables in the given environment. Based on these results, it is recommended to perform the organ-candidate matching on the blockchain with the max batch time out close to the transaction rate

    Designing a Blockchain Model for the Paris Agreement’s Carbon Market Mechanism

    Get PDF
    This paper examines the benefits and constraints of applying blockchain technology for the Paris Agreement carbon market mechanism and develops a list of technical requirements and soft factors as selection criteria to test the feasibility of two different blockchain platforms. The carbon market mechanism, as outlined in Article 6.2 of the Paris Agreement, can accelerate climate action by enabling cooperation between national Parties. However, in the past, carbon markets were limited by several constraints. Our research investigates these constraints and translates them into selection criteria to design a blockchain platform to overcome these past limitations. The developed selection criteria and assumptions developed in this paper provide an orientation for blockchain assessments. Using the selection criteria, we examine the feasibility of two distinct blockchains, Ethereum and Hyperledger Fabric, for the specific use case of Article 6.2. These two blockchain systems represent contrary forms of design and governance; Ethereum constitutes a public and permissionless blockchain governance system, while Hyperledger Fabric represents a private and permissioned governance system. Our results show that both blockchain systems can address present carbon market constraints by enhancing market transparency, increasing process automation, and preventing double counting. The final selection and blockchain system implementation will first be possible, when the Article 6 negotiations are concluded, and governance preferences of national Parties are established. Our paper informs about the viability of different blockchain systems, offers insights into governance options, and provides a valuable framework for a concrete blockchain selection in the future.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Carbon Trading with Blockchain

    Get PDF
    Blockchain has the potential to accelerate the deployment of emissions trading systems (ETS) worldwide and improve upon the efficiency of existing systems. In this paper, we present a model for a permissioned blockchain implementation based on the successful European Union (EU) ETS and discuss its potential advantages over existing technology. We propose an ETS model that is both backwards compatible and future-proof, characterised by interconnectedness, transparency, tamper-resistance and high liquidity. Further, we identify key challenges to implementation of a blockchain ETS, as well as areas of future work required to enable a fully-decentralised blockchain ETS

    A Blockchain Approach to Social Responsibility

    Get PDF
    As blockchain technology matures, more sophisticated solutions arise regarding complex problems. Blockchain continues to spread towards various niches such as government, IoT, energy, and environmental industries. One often overlooked opportunity for blockchain is the social responsibility sector. Presented in this paper is a permissioned blockchain model that enables enterprises to come together and cooperate to optimize their environmental and societal impacts. This is made possible through a private or permissioned blockchain. Permissioned blockchains are blockchain networks where all the participants are known and trust relationships among them can be fostered more smoothly. An example of what a permissioned blockchain would look like is described in this paper as well as its implementation, achieved using Hyperledger Fabric, which is a business-oriented blockchain framework. This study touches on the benefits available for companies that are willing to engage in socially responsible causes through blockchain. It states in what ways a permissioned blockchain can bring together businesses on common ground to increase their reach and provide better customer service. Finally, a use case is provided to bring to life a real-world situation where blockchain use improves service quality for all the parties involved, both the companies and their customers
    • …
    corecore