212 research outputs found

    Blockchain’s roles in strengthening cybersecurity and protecting privacy

    Get PDF
    This paper evaluates blockchain's roles in strengthening cybersecurity and protecting privacy. Since most of the data is currently stored in cloud data centers, it also compares how blockchain performs vis-vis the cloud in various aspects of security and privacy. Key underlying mechanisms related to the blockchain's impacts on the Internet of Things (IoT) security are also covered. From the security and privacy considerations, it highlights how blockchain-based solutions could possibly be, in many aspects, superior to the current IoT ecosystem, which mainly relies on centralized cloud servers through service providers. Using practical applications and real-world examples, the paper argues that blockchain's decentralized feature is likely to result in a low susceptibility to manipulation and forgery by malicious participants. Special consideration is also given to how blockchain-based identity and access management systems can address some of the key challenges associated with IoT security. The paper provides a detailed analysis and description of blockchain's roles in tracking the sources of insecurity in supply chains related to IoT devices. The paper also delves into how blockchain can make it possible to contain an IoT security breach in a targeted way after it is discovered. It discusses and evaluates initiatives of organizations, inter-organizational networks and industries on this front. A number of policy implications are discussed. First, in order to strengthen IoT, regulators can make it obligatory for firms to deploy blockchain in supply chain, especially in systems that are mission critical, and have substantial national security and economic benefits. Second, public policy efforts directed at protecting privacy using blockchain should focus on providing training to key stakeholders and increasing investment in this technology. Third, one way to enrich the blockchain ecosystem would be to turn attention to public–private partnerships. Finally, national governments should provide legal clarity and more information for parties to engage in smart contracts that are enforceable

    Validation of design artefacts for blockchain-enabled precision healthcare as a service.

    Get PDF
    Healthcare systems around the globe are currently experiencing a rapid wave of digital disruption. Current research in applying emerging technologies such as Big Data (BD), Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), Augmented Reality (AR), Virtual Reality (VR), Digital Twin (DT), Wearable Sensor (WS), Blockchain (BC) and Smart Contracts (SC) in contact tracing, tracking, drug discovery, care support and delivery, vaccine distribution, management, and delivery. These disruptive innovations have made it feasible for the healthcare industry to provide personalised digital health solutions and services to the people and ensure sustainability in healthcare. Precision Healthcare (PHC) is a new inclusion in digital healthcare that can support personalised needs. It focuses on supporting and providing precise healthcare delivery. Despite such potential, recent studies show that PHC is ineffectual due to the lower patient adoption in the system. Anecdotal evidence shows that people are refraining from adopting PHC due to distrust. This thesis presents a BC-enabled PHC ecosystem that addresses ongoing issues and challenges regarding low opt-in. The designed ecosystem also incorporates emerging information technologies that are potential to address the need for user-centricity, data privacy and security, accountability, transparency, interoperability, and scalability for a sustainable PHC ecosystem. The research adopts Soft System Methodology (SSM) to construct and validate the design artefact and sub-artefacts of the proposed PHC ecosystem that addresses the low opt-in problem. Following a comprehensive view of the scholarly literature, which resulted in a draft set of design principles and rules, eighteen design refinement interviews were conducted to develop the artefact and sub-artefacts for design specifications. The artefact and sub-artefacts were validated through a design validation workshop, where the designed ecosystem was presented to a Delphi panel of twenty-two health industry actors. The key research finding was that there is a need for data-driven, secure, transparent, scalable, individualised healthcare services to achieve sustainability in healthcare. It includes explainable AI, data standards for biosensor devices, affordable BC solutions for storage, privacy and security policy, interoperability, and usercentricity, which prompts further research and industry application. The proposed ecosystem is potentially effective in growing trust, influencing patients in active engagement with real-world implementation, and contributing to sustainability in healthcare

    Minding the Gap: Computing Ethics and the Political Economy of Big Tech

    Get PDF
    In 1988 Michael Mahoney wrote that “[w]hat is truly revolutionary about the computer will become clear only when computing acquires a proper history, one that ties it to other technologies and thus uncovers the precedents that make its innovations significant” (Mahoney, 1988). Today, over thirty years after this quote was written, we are living right in the middle of the information age and computing technology is constantly transforming modern living in revolutionary ways and in such a high degree that is giving rise to many ethical considerations, dilemmas, and social disruption. To explore the myriad of issues associated with the ethical challenges of computers using the lens of political economy it is important to explore the history and development of computer technology
    • …
    corecore