195 research outputs found

    Blockchain Application on the Internet of Vehicles (IoV)

    Full text link
    With the rapid development of the Internet of Things (IoT) and its potential integration with the traditional Vehicular Ad-Hoc Networks (VANETs), we have witnessed the emergence of the Internet of Vehicles (IoV), which promises to seamlessly integrate into smart transportation systems. However, the key characteristics of IoV, such as high-speed mobility and frequent disconnections make it difficult to manage its security and privacy. The Blockchain, as a distributed tamper-resistant ledge, has been proposed as an innovative solution that guarantees privacy-preserving yet secure schemes. In this paper, we review recent literature on the application of blockchain to IoV, in particular, and intelligent transportation systems in general

    A Review of Research on Privacy Protection of Internet of Vehicles Based on Blockchain

    Get PDF
    Numerous academic and industrial fields, such as healthcare, banking, and supply chain management, are rapidly adopting and relying on blockchain technology. It has also been suggested for application in the internet of vehicles (IoV) ecosystem as a way to improve service availability and reliability. Blockchain offers decentralized, distributed and tamper-proof solutions that bring innovation to data sharing and management, but do not themselves protect privacy and data confidentiality. Therefore, solutions using blockchain technology must take user privacy concerns into account. This article reviews the proposed solutions that use blockchain technology to provide different vehicle services while overcoming the privacy leakage problem which inherently exists in blockchain and vehicle services. We analyze the key features and attributes of prior schemes and identify their contributions to provide a comprehensive and critical overview. In addition, we highlight prospective future research topics and present research problems

    Performance Analysis of Blockchain-Enabled Security and Privacy Algorithms in Connected and Autonomous Vehicles: A Comprehensive Review

    Get PDF
    Strategic investment(s) in vehicle automation technologies led to the rapid development of technology that revolutionised transport services and reduced fatalities on a scale never seen before. Technological advancements and their integration in Connected Autonomous Vehicles (CAVs) increased uptake and adoption and pushed firmly for the development of highly supportive legal and regulatory and testing environments. However, systemic threats to the security and privacy of technologies and lack of data transparency have created a dynamic threat landscape within which the establishment and verification of security and privacy requirements proved to be an arduous task. In CAVs security and privacy issues can affect the resilience of these systems and hinder the safety of the passengers. Existing research efforts have been placed to investigate the security issues in CAVs and propose solutions across the whole spectrum of cyber resilience. This paper examines the state-of-the-art in security and privacy solutions for CAVs. It investigates their integration challenges, drawbacks and efficiencies when coupled with distributed technologies such as Blockchain. It has also listed different cyber-attacks being investigated while designing security and privacy mechanism for CAVs

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Security aspects of communications in VANETs

    Get PDF
    The Fourth Industrial Revolution has begun and it promises breakthroughs in Artificial Intelligence, robotics, Machine Learning, Internet of Things, Digital Twin, and many other technologies that tackle advancements in the industries. The trend is headed towards automation and connectivity. In the automotive industry, advancements have been made towards integrating autonomous driving vehicles into Intelligent Transport Systems (ITS) with the use of Vehicular Ad-Hoc Networks (VANETs). The purpose of this type of network is to enable efficient communication between vehicles (V2V communication) or vehicles and infrastructure (V2I communication), to improve driving safety, to avoid traffic congestion, and to better coordinate transport networks. This direction towards limited (or lack of) human intervention implies vulnerability to cyber attacks. In this context, this paper provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) privacy, 2) authentication and 3) message integrity within VANETs. Discussions, challenges and open issues faced by the current and next generation of vehicular networks are also provided

    A Novel Energy-Efficient Reservation System for Edge Computing in 6G Vehicular Ad Hoc Network

    Get PDF
    The roadside unit (RSU) is one of the fundamental components in a vehicular ad hoc network (VANET), where a vehicle communicates in infrastructure mode. The RSU has multiple functions, including the sharing of emergency messages and the updating of vehicles about the traffic situation. Deploying and managing a static RSU (sRSU) requires considerable capital and operating expenditures (CAPEX and OPEX), leading to RSUs that are sparsely distributed, continuous handovers amongst RSUs, and, more importantly, frequent RSU interruptions. At present, researchers remain focused on multiple parameters in the sRSU to improve the vehicle-to-infrastructure (V2I) communication; however, in this research, the mobile RSU (mRSU), an emerging concept for sixth-generation (6G) edge computing vehicular ad hoc networks (VANETs), is proposed to improve the connectivity and efficiency of communication among V2I. In addition to this, the mRSU can serve as a computing resource for edge computing applications. This paper proposes a novel energy-efficient reservation technique for edge computing in 6G VANETs that provides an energy-efficient, reservation-based, cost-effective solution by introducing the concept of the mRSU. The simulation outcomes demonstrate that the mRSU exhibits superior performance compared to the sRSU in multiple aspects. The mRSU surpasses the sRSU with a packet delivery ratio improvement of 7.7%, a throughput increase of 5.1%, a reduction in end-to-end delay by 4.4%, and a decrease in hop count by 8.7%. The results are generated across diverse propagation models, employing realistic urban scenarios with varying packet sizes and numbers of vehicles. However, it is important to note that the enhanced performance parameters and improved connectivity with more nodes lead to a significant increase in energy consumption by 2%

    Blockchain System for Secure and Efficient UAV-to-Vehicle Communication in Smart Cities

    Get PDF
    In a smart city environment, Intelligent Transportation System (ITS) enables the vehicle to generate and communicate messages for safety applications. There exists a challenge where the integrity of the message needs to be verified before passing it on to other vehicles. There should be a provision to motivate the honest vehicles who are reporting the true event messages. To achieve this, traffic regulations and event detections can be linked with blockchain technology. Any vehicle violating traffic rules will be issued with a penalty by executing the smart contract. In case any accident occurs, the vehicle nearby to the spot can immediately send the event message to Unmanned Aerial Vehicle (UAV). It will check for its credibility and proceed with rewards. The authenticity of the vehicle inside the smart city area is verified by registering itself with UAVs deployed near the city entrance. This is enabled to reduce the participation of unauthorized vehicles inside the city zone. The Secure Hash Algorithm (SHA256) and Elliptic Curve Digital Signature Algorithm (ECDSA-192) are used for communication. The result of computation time for certificate generation and vehicles involvement rate is presented

    Blockchain-Enabled Federated Learning Approach for Vehicular Networks

    Full text link
    Data from interconnected vehicles may contain sensitive information such as location, driving behavior, personal identifiers, etc. Without adequate safeguards, sharing this data jeopardizes data privacy and system security. The current centralized data-sharing paradigm in these systems raises particular concerns about data privacy. Recognizing these challenges, the shift towards decentralized interactions in technology, as echoed by the principles of Industry 5.0, becomes paramount. This work is closely aligned with these principles, emphasizing decentralized, human-centric, and secure technological interactions in an interconnected vehicular ecosystem. To embody this, we propose a practical approach that merges two emerging technologies: Federated Learning (FL) and Blockchain. The integration of these technologies enables the creation of a decentralized vehicular network. In this setting, vehicles can learn from each other without compromising privacy while also ensuring data integrity and accountability. Initial experiments show that compared to conventional decentralized federated learning techniques, our proposed approach significantly enhances the performance and security of vehicular networks. The system's accuracy stands at 91.92\%. While this may appear to be low in comparison to state-of-the-art federated learning models, our work is noteworthy because, unlike others, it was achieved in a malicious vehicle setting. Despite the challenging environment, our method maintains high accuracy, making it a competent solution for preserving data privacy in vehicular networks.Comment: 7 page
    corecore