429 research outputs found

    Managing Byzantine Robots via Blockchain Technology in a Swarm Robotics Collective Decision Making Scenario

    Get PDF
    While swarm robotics systems are often claimed to be highly fault-tolerant, so far research has limited its attention to safe laboratory settings and has virtually ignored security issues in the presence of Byzantine robots—i.e., robots with arbitrarily faulty or malicious behavior. However, in many applications one or more Byzantine robots may suffice to let current swarm coordination mechanisms fail with unpredictable or disastrous outcomes. In this paper, we provide a proof-of-concept for managing security issues in swarm robotics systems via blockchain technology. Our approach uses decentralized programs executed via blockchain technology (blockchain-based smart contracts) to establish secure swarm coordination mechanisms and to identify and exclude Byzantine swarm members. We studied the performance of our blockchain-based approach in a collective decision-making scenario both in the presence and absence of Byzantine robots and compared our results to those obtained with an existing collective decision approach. The results show a clear advantage of the blockchain approach when Byzantine robots are part of the swarm.Marie Skłodowska-Curie actions (EU project BROS - DLV-751615

    The blockchain: a new framework for robotic swarm systems

    Get PDF
    Swarms of robots will revolutionize many industrial applications, from targeted material delivery to precision farming. However, several of the heterogeneous characteristics that make them ideal for certain future applications --- robot autonomy, decentralized control, collective emergent behavior, etc. --- hinder the evolution of the technology from academic institutions to real-world problems. Blockchain, an emerging technology originated in the Bitcoin field, demonstrates that by combining peer-to-peer networks with cryptographic algorithms a group of agents can reach an agreement on a particular state of affairs and record that agreement without the need for a controlling authority. The combination of blockchain with other distributed systems, such as robotic swarm systems, can provide the necessary capabilities to make robotic swarm operations more secure, autonomous, flexible and even profitable. This work explains how blockchain technology can provide innovative solutions to four emergent issues in the swarm robotics research field. New security, decision making, behavior differentiation and business models for swarm robotic systems are described by providing case scenarios and examples. Finally, limitations and possible future problems that arise from the combination of these two technologies are described

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    A Survey of Applications of Blockchain in Collective Decision-Making Scenarios in Swarm Robotics

    Get PDF
    Blockchain is a distributed ledger that was introduced to decentralize monetary systems. However, with time, the applications of blockchain in different realms have been identified. Swarm robotics is a field that combines swarm intelligence and robotics to solve real-world problems that cannot be solved by monolithic robots. Collective decision-making is one of the major behaviors implemented by swarm robotics. This study analyzes existing literature on the applications of blockchain in the collective decision-making scenarios in swarm robotics. Consequently, this study introduces a novel taxonomy to study the different applications effectively. The taxonomy categorizes existing literature into (i) application of blockchain in other areas of swarm robotics, (ii) application of blockchain in continuous collective decision-making scenarios, (iii) application of blockchain in discrete collective decision-making scenarios, (iv) application of blockchain in other discrete collective decision-making scenarios, and (v) application of blockchain in the collective perception scenario. Finally, the limitations of existing work such as excessive resource consumption and violation of swarm robotics principles are discussed

    Minimalistic Collective Perception with Imperfect Sensors

    Full text link
    Collective perception is a foundational problem in swarm robotics, in which the swarm must reach consensus on a coherent representation of the environment. An important variant of collective perception casts it as a best-of-nn decision-making process, in which the swarm must identify the most likely representation out of a set of alternatives. Past work on this variant primarily focused on characterizing how different algorithms navigate the speed-vs-accuracy tradeoff in a scenario where the swarm must decide on the most frequent environmental feature. Crucially, past work on best-of-nn decision-making assumes the robot sensors to be perfect (noise- and fault-less), limiting the real-world applicability of these algorithms. In this paper, we derive from first principles an optimal, probabilistic framework for minimalistic swarm robots equipped with flawed sensors. Then, we validate our approach in a scenario where the swarm collectively decides the frequency of a certain environmental feature. We study the speed and accuracy of the decision-making process with respect to several parameters of interest. Our approach can provide timely and accurate frequency estimates even in presence of severe sensory noise.Comment: 7 pages, accepted into IROS2023. Current version incorporates minor updates from reviewer comment

    Developing Decentralised Resilience to Malicious Influence in Collective Perception Problem

    Full text link
    In collective decision-making, designing algorithms that use only local information to effect swarm-level behaviour is a non-trivial problem. We used machine learning techniques to teach swarm members to map their local perceptions of the environment to an optimal action. A curriculum inspired by Machine Education approaches was designed to facilitate this learning process and teach the members the skills required for optimal performance in the collective perception problem. We extended upon previous approaches by creating a curriculum that taught agents resilience to malicious influence. The experimental results show that well-designed rules-based algorithms can produce effective agents. When performing opinion fusion, we implemented decentralised resilience by having agents dynamically weight received opinion. We found a non-significant difference between constant and dynamic weights, suggesting that momentum-based opinion fusion is perhaps already a resilience mechanism.Comment: 14 Pages, 14 Figure

    Detecting Robotic Anomalies using RobotChain

    Get PDF
    Robotic events can provide notable amounts of information regarding a robot’s status, which can be extrapolated to detect productivity, anomalies, malfunctions and used for monitorization. However, when problems occur in sensitive environments like a factory, the logs of a machine may be discarded because they are susceptible to chances and malicious intents. In this paper we propose to use RobotChain for anomaly detection. RobotChain is a method to securely register robotic events, using a blockchain, which ensures that once an event gets registered on it, it’s secured and cannot be tampered with. We show how this system can be leveraged with the module for anomaly detection, that uses the information contained on the blockchain to detect anomalies on a UR3 robot.This work was partially supported by the Tezos Fundation through a grant for project Robotchaininfo:eu-repo/semantics/publishedVersio
    • …
    corecore