2,321 research outputs found

    A survey of an introduction to fault diagnosis algorithms

    Get PDF
    This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included

    Process operating mode monitoring : switching online the right controller

    Get PDF
    This paper presents a structure which deals with process operating mode monitoring and allows the control law reconfiguration by switching online the right controller. After a short review of the advances in switching based control systems during the last decade, we introduce our approach based on the definition of operating modes of a plant. The control reconfiguration strategy is achieved by online selection of an adequate controller, in a case of active accommodation. The main contribution lies in settling up the design steps of the multicontroller structure and its accurate integration in the operating mode detection and accommodation loop. Simulation results show the effectiveness of the operating mode detection and accommodation (OMDA) structure for which the design steps propose a method to study the asymptotic stability, switching performances improvement, and the tuning of the multimodel based detector

    Network-on-Chip -based Multi-Processor System-on-Chip: Towards Mixed-Criticality System Certification

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    Automatic Generation of Models of Microarchitectures

    Get PDF
    Detailed microarchitectural models are necessary to predict, explain, or optimize the performance of software running on modern microprocessors. Building such models often requires a significant manual effort, as the documentation provided by hardware manufacturers is typically not precise enough. The goal of this thesis is to develop techniques for generating microarchitectural models automatically. In the first part, we focus on recent x86 microarchitectures. We implement a tool to accurately evaluate small microbenchmarks using hardware performance counters. We then describe techniques to automatically generate microbenchmarks for measuring the performance of individual instructions and for characterizing cache architectures. We apply our implementations to more than a dozen different microarchitectures. In the second part of the thesis, we study more general techniques to obtain models of hardware components. In particular, we propose the concept of gray-box learning, and we develop a learning algorithm for Mealy machines that exploits prior knowledge about the system to be learned. Finally, we show how this algorithm can be adapted to minimize incompletely specified Mealy machines—a well-known NP-complete problem. Our implementation outperforms existing exact minimization techniques by several orders of magnitude on a number of hard benchmarks; it is even competitive with state-of-the-art heuristic approaches.Zur Vorhersage, Erklärung oder Optimierung der Leistung von Software auf modernen Mikroprozessoren werden detaillierte Modelle der verwendeten Mikroarchitekturen benötigt. Das Erstellen derartiger Modelle ist oft mit einem hohen Aufwand verbunden, da die erforderlichen Informationen von den Prozessorherstellern typischerweise nicht zur Verfügung gestellt werden. Das Ziel der vorliegenden Arbeit ist es, Techniken zu entwickeln, um derartige Modelle automatisch zu erzeugen. Im ersten Teil beschäftigen wir uns mit aktuellen x86-Mikroarchitekturen. Wir entwickeln zuerst ein Tool, das kleine Microbenchmarks mithilfe von Performance Countern auswerten kann. Danach beschreiben wir Techniken, um automatisch Microbenchmarks zu erzeugen, mit denen die Leistung einzelner Instruktionen gemessen sowie die Cache-Architektur charakterisiert werden kann. Im zweiten Teil der Arbeit betrachten wir allgemeinere Techniken, um Hardwaremodelle zu erzeugen. Wir schlagen das Konzept des “Gray-Box Learning” vor, und wir entwickeln einen Lernalgorithmus für Mealy-Maschinen, der bekannte Informationen über das zu lernende System berücksichtigt. Zum Abschluss zeigen wir, wie dieser Algorithmus auf das Problem der Minimierung unvollständig spezifizierter Mealy-Maschinen übertragen werden kann. Hierbei handelt es sich um ein bekanntes NP-vollständiges Problem. Unsere Implementierung ist in mehreren Benchmarks um Größenordnungen schneller als vorherige Ansätze

    Design of a modular digital computer system, DRL 4

    Get PDF
    The design is reported of an advanced modular computer system designated the Automatically Reconfigurable Modular Multiprocessor System, which anticipates requirements for higher computing capacity and reliability for future spaceborne computers. Subjects discussed include: an overview of the architecture, mission analysis, synchronous and nonsynchronous scheduling control, reliability, and data transmission

    Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Get PDF
    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described
    corecore