3,393 research outputs found

    Magnetic suspension systems for space applications

    Get PDF
    An overview of techniques is presented used in the described magnetic suspension systems. Also a review is presented of the systems already developed, which demonstrate the usefulness, applicability, and flight readiness of magnetic suspension to a broad range of payloads and environments. The following subject areas are covered: programs overview; key concepts; magnetic suspension as an isolator and as a pointer; pointing and isolation systems; magnetic actuator control techniques; and test data

    Intent prediction of vulnerable road users for trusted autonomous vehicles

    Full text link
    This study investigated how future autonomous vehicles could be further trusted by vulnerable road users (such as pedestrians and cyclists) that they would be interacting with in urban traffic environments. It focused on understanding the behaviours of such road users on a deeper level by predicting their future intentions based solely on vehicle-based sensors and AI techniques. The findings showed that personal/body language attributes of vulnerable road users besides their past motion trajectories and physics attributes in the environment led to more accurate predictions about their intended actions

    Analysis and Prediction of Pedestrian Crosswalk Behavior during Automated Vehicle Interactions

    Full text link
    For safe navigation around pedestrians, automated vehicles (AVs) need to plan their motion by accurately predicting pedestriansā€™ trajectories over long time horizons. Current approaches to AV motion planning around crosswalks predict only for short time horizons (1-2 s) and are based on data from pedestrian interactions with human-driven vehicles (HDVs). In this paper, we develop a hybrid systems model that uses pedestriansā€™ gap acceptance behavior and constant velocity dynamics for long-term pedestrian trajectory prediction when interacting with AVs. Results demonstrate the applicability of the model for long-term (> 5 s) pedestrian trajectory prediction at crosswalks. Further, we compared measures of pedestrian crossing behaviors in the immersive virtual environment (when interacting with AVs) to that in the real world (results of published studies of pedestrians interacting with HDVs), and found similarities between the two. These similarities demonstrate the applicability of the hybrid model of AV interactions developed from an immersive virtual environment (IVE) for real-world scenarios for both AVs and HDVs.Toyota Research Institute (TRI) provided funds to assist the authors with their research, but this article solely reflects the opinions and conclusions of its authors and not TRI or any other Toyota entity. The work was also supported in part by the National Science Foundation and supported in part by the Automotive Research Center at the University of Michigan, with funding from government contract Department of the Army W56HZV- 14-2-0001 through the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154053/1/ICRA_2020_Analysis_and_Prediction_of_Pedestrian_Final_revised_03_03_20.pdfDescription of ICRA_2020_Analysis_and_Prediction_of_Pedestrian_Final_revised_03_03_20.pdf : Main fil
    • ā€¦
    corecore