4,862 research outputs found

    On Optimally Partitioning Variable-Byte Codes

    Get PDF
    The ubiquitous Variable-Byte encoding is one of the fastest compressed representation for integer sequences. However, its compression ratio is usually not competitive with other more sophisticated encoders, especially when the integers to be compressed are small that is the typical case for inverted indexes. This paper shows that the compression ratio of Variable-Byte can be improved by 2x by adopting a partitioned representation of the inverted lists. This makes Variable-Byte surprisingly competitive in space with the best bit-aligned encoders, hence disproving the folklore belief that Variable-Byte is space-inefficient for inverted index compression. Despite the significant space savings, we show that our optimization almost comes for free, given that: we introduce an optimal partitioning algorithm that does not affect indexing time because of its linear-time complexity; we show that the query processing speed of Variable-Byte is preserved, with an extensive experimental analysis and comparison with several other state-of-the-art encoders.Comment: Published in IEEE Transactions on Knowledge and Data Engineering (TKDE), 15 April 201

    Compression of spectral meteorological imagery

    Get PDF
    Data compression is essential to current low-earth-orbit spectral sensors with global coverage, e.g., meteorological sensors. Such sensors routinely produce in excess of 30 Gb of data per orbit (over 4 Mb/s for about 110 min) while typically limited to less than 10 Gb of downlink capacity per orbit (15 minutes at 10 Mb/s). Astro-Space Division develops spaceborne compression systems for compression ratios from as little as three to as much as twenty-to-one for high-fidelity reconstructions. Current hardware production and development at Astro-Space Division focuses on discrete cosine transform (DCT) systems implemented with the GE PFFT chip, a 32x32 2D-DCT engine. Spectral relations in the data are exploited through block mean extraction followed by orthonormal transformation. The transformation produces blocks with spatial correlation that are suitable for further compression with any block-oriented spatial compression system, e.g., Astro-Space Division's Laplacian modeler and analytic encoder of DCT coefficients

    Friction and wear of several compressor gas-path seal movements

    Get PDF
    Rub interaction experiments were conducted on a series of sintered and plasma sprayed compressor gas path seal materials in contact with Ti-6Al-4V blade tip and knife edge rotors. The most rub tolerant materials investigated were sintered Nichrome and plasma sprayed nickel 25 percent graphite. The effectiveness of providing a compliant substrate for dense seal material coatings was also demonstrated. In general, it was observed that rotor wear and high frictional energy generation rates accompanied smearing or surface densification of the materials investigated. The onset of smearing was sensitive to rub interaction parameters and seal geometry. Two complementary models were proposed to account for the smearing trends. One is based on thermal effects, the other on particulate escape effects. They were shown to be consistent with the experimental evidence at hand, and together they predict that smearing, with the onset of high energy rub conditions, is favored when incursion rates (radial motion) are low, incursion depths are high, the seal geometry is of a knife-edge character, and the seal particle size is small

    Parallel object-oriented algorithms for simulation of multiphysics : application to thermal systems

    Get PDF
    The present and the future expectation in parallel computing pose a new generational change in simulation and computing. Modern High Performance Computing (HPC) facilities have high computational power in terms of operations per second -today peta-FLOPS (10e15 FLOPS) and growing toward the exascale (10e18 FLOPS) which is expected in few years-. This opens the way for using simulation tools in a wide range of new engineering and scientific applications. For example, CFD&HT codes will be effectively used in the design phase of industrial devices, obtaining valuable information with reasonable time expenses. However, the use of the emerging computer architectures is subjected to enhancements and innovation in software design patterns. So far, powerful codes for individually studying heat and mass transfer phenomena at multiple levels of modeling are available. However, there is no way to combine them for resolving complex coupled problems. In the current context, this PhD thesis presents the development of parallel methodologies, and its implementation as an object-oriented software platform, for the simulation of multiphysics systems. By means of this new software platform, called NEST, the distinct codes can now be integrated into single simulation tools for specific applications of social and industrial interest. This is done in an intuitive and simple way so that the researchers do not have to bother either on the coexistence of several codes at the same time neither on how they interact to each other. The coupling of the involved components is controlled from a low level code layer, which is transparent to the users. This contributes with appealing benefits on software projects management first and on the flexibility and features of the simulations, later. In sum, the presented approaches pose a new paradigm in the production of physics simulation programs. Although the thesis pursues general purpose applications, special emphasis is placed on the simulation of thermal systems, in particular on buildings energy assessment and on hermetic reciprocating compressors.Las expectativas puestas en el uso de la computación en paralelo plantean un cambio generacional en simulación y computación. Las más modernas instalaciones computacionales de alto nivel -High Performance Computing (HPC)- alcanzan ya la capacidad de realizar gran cantidad de operaciones por segundo -hoy del orden de peta-FLOPS (1e15 FLOPS) y dirigiéndose hacia exaFlops (1e18 FLOPS)-. Esto abre la posibilidad de usar la simulación por ordenador en un amplio espectro de nuevas aplicaciones en ciencia e ingeniería. Por ejemplo, los códigos de CFD&HT van a poder usarse de una forma más efectiva en la fase de diseño de dispositivos industriales ya que se obtendrán resultados muy valiosos en tiempos de ejecución razonables. Por el momento, hay muchos códigos disponibles para el estudio individual de fenómenos de transferencia de calor i de masa con distintos niveles de modelización. Sin embargo, estos códigos no se pueden combinar entre sí para abordar problemas más complejos, en los cuales varios fenómenos físicos interactúan simultáneamente. Bajo este contexto, en esta tesis doctoral se presenta el desarrollo de una metodología de estrategia paralela, y su implementación en una plataforma informática, para la simulación de sistemas multi-físicos. De éste modo, ahora los distintos códigos pueden ser integrados para la creación de nuevas herramientas de simulación destinadas a aplicaciones específicas de interés tanto social como industrial. Esto se hace de una manera intuitiva y simple de manera que los investigadores no tienen que preocuparse ni por la coexistencia de varios códigos simultáneamente ni en cómo hacer que interactúen entre ellos. El acoplamiento entre los diferentes componentes involucrados en una simulación se realiza mediante un código más básico con el cual el usuario solamente interacciona a través de una interfase. Esto aporta interesantes beneficios tanto en la gestión de los proyectos de programario como en la flexibilidad y las características de las simulaciones. En resumen, la estrategia que se propone plantea un nuevo paradigma en la producción de programas de simulación de fenómenos físicos. Aunque la tesis persigue aplicaciones de propósito general se ha puesto especial atención en la simulación de sistemas térmicos, en particular en la evaluación energética de edificios y en compresores herméticos alternativos.Postprint (published version

    Dv2v: A Dynamic Variable-to-Variable Compressor

    Full text link
    We present Dv2v, a new dynamic (one-pass) variable-to-variable compressor. Variable-to-variable compression aims at using a modeler that gathers variable-length input symbols and a variable-length statistical coder that assigns shorter codewords to the more frequent symbols. In Dv2v, we process the input text word-wise to gather variable-length symbols that can be either terminals (new words) or non-terminals, subsequences of words seen before in the input text. Those input symbols are set in a vocabulary that is kept sorted by frequency. Therefore, those symbols can be easily encoded with dense codes. Our Dv2v permits real-time transmission of data, i.e. compression/transmission can begin as soon as data become available. Our experiments show that Dv2v is able to overcome the compression ratios of the v2vDC, the state-of-the-art semi-static variable-to-variable compressor, and to almost reach p7zip values. It also draws a competitive performance at both compression and decompression.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094

    A carbon dioxide reduction unit using Bosch reaction and expendable catalyst cartridges

    Get PDF
    Catalytic carbon dioxide reduction cartridge for oxygen recovery in life support systems of long term manned space flight

    Deep Learning for Black-Box Modeling of Audio Effects

    Get PDF
    Virtual analog modeling of audio effects consists of emulating the sound of an audio processor reference device. This digital simulation is normally done by designing mathematical models of these systems. It is often difficult because it seeks to accurately model all components within the effect unit, which usually contains various nonlinearities and time-varying components. Most existing methods for audio effects modeling are either simplified or optimized to a very specific circuit or type of audio effect and cannot be efficiently translated to other types of audio effects. Recently, deep neural networks have been explored as black-box modeling strategies to solve this task, i.e., by using only input–output measurements. We analyse different state-of-the-art deep learning models based on convolutional and recurrent neural networks, feedforward WaveNet architectures and we also introduce a new model based on the combination of the aforementioned models. Through objective perceptual-based metrics and subjective listening tests we explore the performance of these models when modeling various analog audio effects. Thus, we show virtual analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such as a transistor-based limiter and nonlinear time-varying effects, such as the rotating horn and rotating woofer of a Leslie speaker cabinet

    JT90 thermal barrier coated vanes

    Get PDF
    The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test
    corecore