169,945 research outputs found

    Resolution of Linear Algebra for the Discrete Logarithm Problem Using GPU and Multi-core Architectures

    Get PDF
    In cryptanalysis, solving the discrete logarithm problem (DLP) is key to assessing the security of many public-key cryptosystems. The index-calculus methods, that attack the DLP in multiplicative subgroups of finite fields, require solving large sparse systems of linear equations modulo large primes. This article deals with how we can run this computation on GPU- and multi-core-based clusters, featuring InfiniBand networking. More specifically, we present the sparse linear algebra algorithms that are proposed in the literature, in particular the block Wiedemann algorithm. We discuss the parallelization of the central matrix--vector product operation from both algorithmic and practical points of view, and illustrate how our approach has contributed to the recent record-sized DLP computation in GF(28092^{809}).Comment: Euro-Par 2014 Parallel Processing, Aug 2014, Porto, Portugal. \<http://europar2014.dcc.fc.up.pt/\&gt

    A fast method for solving a block tridiagonal quasi-Toeplitz linear system

    Get PDF
    This paper addresses the problem of solving block tridiagonal quasi-Toeplitz linear systems. Inspired by Du, we propose a more general algorithm for such systems. The algorithm is based on a block decomposition for block tridiagonal quasi-Toeplitz matrices and the Sherman–Morrison–Woodbury inversion formula. We also compare the proposed approach to the standard block LU decomposition method and the Gauss algorithm. A theoretical error analysis is also presented. All algorithms have been implemented in Matlab. Numerical experiments performed on a wide variety of test problems show the eΒ€ectiveness of our algorithm in terms of efficiency, stability, and robustness.The third author was partially financed by Portuguese Funds through FCT within the Project UID/MAT/00013/2013

    Transmit Precoding for MIMO Systems with Partial CSI and Discrete-Constellation Inputs

    Get PDF
    In this paper, we consider the transmit linear precoding problem for MIMO systems with discrete-constellation inputs. We assume that the receiver has perfect channel state information (CSI) and the transmitter only has partial CSI, namely, the channel covariance information. We first consider MIMO systems over frequency-flat fading channels. We design the optimal linear precoder based on direct maximization of mutual information over the MIMO channels with discrete-constellation inputs. It turns out that the optimal linear precoder is a non-diagonal non-unitary matrix. Then, we consider MIMO systems over frequency selective fading channels via extending our method to MIMO-OFDM systems. To keep reasonable computational complexity of solving the linear precoding matrix, we propose a sub-optimal approach to restrict the precoding matrix as a block-diagonal matrix. This approach has near-optimal performance when we integrate it with a properly chosen interleaver. Numerical examples show that for MIMO systems over frequency flat fading channels, our proposed optimal linear precoder enjoys 6-9 dB gain compared to the same system without linear precoder. For MIMO-OFDM systems, our reduced-complexity sub-optimal linear precoder captures 3-6 dB gain compared to the same system with no precoding. Moreover, for those MIMO systems employing a linear precoder designed based on Gaussian inputs with gap approximation technique for discrete-constellation inputs, significant loss may occur when the signal-to-noise ratio is larger than 0 dB

    Inversion of linear dynamical systems under conditions of quasiharmonic signals

    Get PDF
    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ обращСния динамичСских систСм нашли ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ управлСния мСханичСскими ΠΈ элСктричСскими систСмами. Π˜Π½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ динамичСских систСм являСтся эффСктивным способом Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ процСссов управлСния ΠΏΠΎ Π²ΠΎΠ·ΠΌΡƒΡ‰Π΅Π½ΠΈΡŽ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… систСмах управлСния с ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ модСлью. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ обращСния Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ ряд трудностСй, связанных с высокой Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ точности задания ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°, Π½Π΅ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ нСминимально-Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΌΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈ условий физичСской рСализуСмости. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдлагаСтся ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ обращСния Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… стационарных динамичСских систСм Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ свободный ΠΎΡ‚ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… нСдостатков. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ матСматичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… динамичСских систСм Π² Ρ„ΠΎΡ€ΠΌΠ΅ "Π²Ρ…ΠΎΠ΄-Π²Ρ‹Ρ…ΠΎΠ΄", ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰ΠΈΠ΅ трСбованиям асимптотичСской устойчивости, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ равСнства размСрностСй Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π²Ρ…ΠΎΠ΄Π° ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π°. Π’ основС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π»Π΅ΠΆΠΈΡ‚ прСдставлСниС Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹Ρ… сигналов ΠΈΡ… приблиТСниями Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ пространствС квазигармоничСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° обращСния динамичСских систСм являСтся прСдставлСниС ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ² Π² Π²ΠΈΠ΄Π΅ произвСдСния ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ† Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ стСпСнСй Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’Π°ΠΊΠΎΠ΅ прСдставлСниС ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ свСсти Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ постановок Π·Π°Π΄Π°Ρ‡ обращСния ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… систСм ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… алгСбраичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. ΠšΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Π°Ρ рСализация, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ систСмы, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° для "ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ…" Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… скалярных систСм Π² условиях квазигармоничСских сигналов ΠΈ содСрТит Π±Π»ΠΎΠΊΠΈ аппроксимации задания ΠΏΠΎ Π²Ρ‹Ρ…ΠΎΠ΄Ρƒ, формирования ΠΌΠ°Ρ‚Ρ€ΠΈΡ† Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… систСм ΠΈ ΠΏΡ€Π°Π²Ρ‹Ρ… частСй Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… алгСбраичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΎΡ†Π΅Π½ΠΊΡƒ числа обусловлСнности Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ систСмы ΠΈ Π±Π»ΠΎΠΊ сравнСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° обращСния с Π·Π°Π΄Π°Π½ΠΈΠ΅ΠΌ Π½Π° основС нСпосрСдствСнного интСгрирования Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ.The methods of inversion of dynamical systems are widely used for solving the problems of controlling mechanical and electrical systems. The inverting of dynamic systems is an effective way of implementing processes of control according to disturbance, as well as in combined control systems with a predictive model. In solving the problems of inversion, there are number of difficulties related to the high sensitivity of the results in relation to accuracy of specifying the parameters of a mathematical model of an object, the instability in the control of non-minimal-phase objects, and the violation of physical feasibility conditions. The paper suggests an approximate method for solving the inversion problem for linear stationary dynamical systems that is largely free of the indicated disadvantages. The method is based on the representation of input and output signals by their approximations in the linear space of quasiharmonic functions of time. Consider mathematical models of linear dynamical systems in the form "input-output". The systems under consideration must satisfy the requirements of asymptotic stability, and also the condition of equality of dimension of the input and output vectors. A feature of the proposed method of inversion of dynamical systems is the representation of multidimensional polynomials, approximating input and output signals, in the form of a product of rectangular matrices and a vector of power of time. Such a representation allowed reducing most of the statements of inversion problems to the solution of linear systems of matrix algebraic equations. The computer implementation of the proposed approach to the inverting of the linear system is developed for "square" linear scalar systems in conditions of polynomial signal and contains blocks of approximation of the output assignment; the formation of matrices of linear systems and right-hand sides of linear algebraic equations; estimation of the condition number of the solution of the linear system and the block of comparison the result of the inversion with the assignment based on the direct integration of the differential equations of the mathematical model
    • …
    corecore