2 research outputs found

    Compression of ECG signals using variable-length classified vector sets and wavelet transforms

    Get PDF
    In this article, an improved and more efficient algorithm for the compression of the electrocardiogram (ECG) signals is presented, which combines the processes of modeling ECG signal by variable-length classified signature and envelope vector sets (VL-CSEVS), and residual error coding via wavelet transform. In particular, we form the VL-CSEVS derived from the ECG signals, which exploits the relationship between energy variation and clinical information. The VL-CSEVS are unique patterns generated from many of thousands of ECG segments of two different lengths obtained by the energy based segmentation method, then they are presented to both the transmitter and the receiver used in our proposed compression system. The proposed algorithm is tested on the MIT-BIH Arrhythmia Database and MIT-BIH Compression Test Database and its performance is evaluated by using some evaluation metrics such as the percentage root-mean-square difference (PRD), modified PRD (MPRD), maximum error, and clinical evaluation. Our experimental results imply that our proposed algorithm achieves high compression ratios with low level reconstruction error while preserving the diagnostic information in the reconstructed ECG signal, which has been supported by the clinical tests that we have carried out.ISIK University [06B302]The author would like to special thank Prof. Siddik Yarman who is Board of Trustees Chairman of the ISIK University and Umit Guz, Assistant Professor at the ISIK University for their valuable contributions and continuous interest in this article. The author also would like to thank Prof. Osman Akdemir who is a cardiologist in the Department of Cardiology at the T. C. Maltepe University and Dr. Ruken Bengi Bakal who is a cardiologist in the Department of Cardiology at the Kartal Kosuyolu Yuksek Ihtisas Education and Research Hospital for their valuable clinical contributions and suggestions and the reviewers for their constructive comments which improved the technical quality and presentation of the article. The present work was supported by the Scientific Research Fund of ISIK University, Project number 06B302.Publisher's Versio

    Block size effect on image compression using SYMPES method

    No full text
    corecore