23,575 research outputs found

    Video Compressive Sensing for Dynamic MRI

    Full text link
    We present a video compressive sensing framework, termed kt-CSLDS, to accelerate the image acquisition process of dynamic magnetic resonance imaging (MRI). We are inspired by a state-of-the-art model for video compressive sensing that utilizes a linear dynamical system (LDS) to model the motion manifold. Given compressive measurements, the state sequence of an LDS can be first estimated using system identification techniques. We then reconstruct the observation matrix using a joint structured sparsity assumption. In particular, we minimize an objective function with a mixture of wavelet sparsity and joint sparsity within the observation matrix. We derive an efficient convex optimization algorithm through alternating direction method of multipliers (ADMM), and provide a theoretical guarantee for global convergence. We demonstrate the performance of our approach for video compressive sensing, in terms of reconstruction accuracy. We also investigate the impact of various sampling strategies. We apply this framework to accelerate the acquisition process of dynamic MRI and show it achieves the best reconstruction accuracy with the least computational time compared with existing algorithms in the literature.Comment: 30 pages, 9 figure

    Review of simulating four classes of window materials for daylighting with non-standard BSDF using the simulation program Radiance

    Full text link
    This review describes the currently available simulation models for window material to calculate daylighting with the program "Radiance". The review is based on four abstract and general classes of window materials, depending on their scattering and redirecting properties (bidirectional scatter distribution function, BSDF). It lists potential and limits of the older models and includes the most recent additions to the software. All models are demonstrated using an exemplary indoor scene and two typical sky conditions. It is intended as clarification for applying window material models in project work or teaching. The underlying algorithmic problems apply to all lighting simulation programs, so the scenarios of materials and skies are applicable to other lighting programs

    A contact lens with built-in display: science fiction or not?

    Get PDF
    Recent progress in microsystems integration technology such as ultra-thin chip packaging, stretchable interconnections, thin-film batteries and organic photovoltaics makes it feasible to incorporate various electronic components and transducers in extremely confined spaces and inside flexible or conformable objects. Can this ultimately lead to a genuine display in a contact lens? The major outstanding issues are reviewed

    Kinect Range Sensing: Structured-Light versus Time-of-Flight Kinect

    Full text link
    Recently, the new Kinect One has been issued by Microsoft, providing the next generation of real-time range sensing devices based on the Time-of-Flight (ToF) principle. As the first Kinect version was using a structured light approach, one would expect various differences in the characteristics of the range data delivered by both devices. This paper presents a detailed and in-depth comparison between both devices. In order to conduct the comparison, we propose a framework of seven different experimental setups, which is a generic basis for evaluating range cameras such as Kinect. The experiments have been designed with the goal to capture individual effects of the Kinect devices as isolatedly as possible and in a way, that they can also be adopted, in order to apply them to any other range sensing device. The overall goal of this paper is to provide a solid insight into the pros and cons of either device. Thus, scientists that are interested in using Kinect range sensing cameras in their specific application scenario can directly assess the expected, specific benefits and potential problem of either device.Comment: 58 pages, 23 figures. Accepted for publication in Computer Vision and Image Understanding (CVIU

    Embedded Line Scan Image Sensors: The Low Cost Alternative for High Speed Imaging

    Full text link
    In this paper we propose a low-cost high-speed imaging line scan system. We replace an expensive industrial line scan camera and illumination with a custom-built set-up of cheap off-the-shelf components, yielding a measurement system with comparative quality while costing about 20 times less. We use a low-cost linear (1D) image sensor, cheap optics including a LED-based or LASER-based lighting and an embedded platform to process the images. A step-by-step method to design such a custom high speed imaging system and select proper components is proposed. Simulations allowing to predict the final image quality to be obtained by the set-up has been developed. Finally, we applied our method in a lab, closely representing the real-life cases. Our results shows that our simulations are very accurate and that our low-cost line scan set-up acquired image quality compared to the high-end commercial vision system, for a fraction of the price.Comment: 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA

    Feature extraction of the wear label of carpets by using a novel 3D scanner

    Get PDF
    In the textile industry, the quality of carpets is still determined through visual assessment by human experts. Human assessment is somewhat subjective, so there is a need for a more objective assessment which yields to automated systems. However, existing computer models are at this moment not yet capable of matching the human expertise. Most attempts at automated assessment have focused on image analysis of two dimensional images of worn carpet. These do not adequately capture the three dimensional structure of the carpet that is also evaluated by the experts and the image processing is very dependent on the lighting conditions. One previous attempt however used a laser scanner to obtain three dimensional images of the carpet and process them for carpet assessment. This paper describes the development of a new scanner to acquire wear label characteristics in three dimensions based on a structured light pattern. Now an appropriate technique based on the local binary patterns (LBP) and the Kullback-Leibler divergence has been developed. We show that the new laser scanning system is less dependent on the lighting conditions and color of the carpet and obtains data points on a structured grid instead of sparse points. The new system is also more than five times cheaper, scans more than seven times faster and is specifically designed for scanning carpets instead of 3D objects. Previous attempts to classify the carpet wear were based on several extracted features. Only one of them - the height difference between worn and unworn part - showed a good correlation of 0.70 with the carpet wear label. However, experiments demonstrate that our approach - using the LBP technique - gives rise to promising results, with correlation factors from 0.89 to 0.99 between the Kullback-Leibler divergence and quality labels. This new laser scanner system is a significant step forward in the automated assessment of carpet wear using 3D images

    Visual Inspection System To Detect Connector Tilts In PCBAs [TS156. V844 2005 f rb] [Microfiche 7845].

    Get PDF
    Sistem pemeriksaan visual automatic memainkan peranan penting dalam bahagian tapisan kualiti di industri eletronik. AVI’s are playing important roles in quality inspection in the electronic industry

    Automated optical inspection of solder paste based on 2.5D visual images

    Get PDF
    In this paper, a special technique for the inspection of solder paste using directional LED lighting is presented. Conventional optical inspection method would depend on an image acquired from a camera mounted from the top. This 2D inspection of solder paste based on images is fast but is limited to defect such as bridge or no solder. Defects related to the volume of the printed solder paste or unevenness of the paste cannot be treated from a top image. The developed technique of this paper would involve the use of special directional side lighting to acquire two-and-a-half dimensional (2.5D) images from above the solder paste block. A sequence of three images is acquired and image processing is carried out for defect detection of the printed solder paste. The acquired images would highlight the geometrical features of the solder paste block. Solder paste inspection is then carried out based on the highlighted features. The proposed method can handle other types of defects that cannot be treated by conventional top light images. ©2009 IEEE.published_or_final_versio
    corecore