3,308 research outputs found

    Block stochastic gradient iteration for convex and nonconvex optimization

    Full text link
    The stochastic gradient (SG) method can minimize an objective function composed of a large number of differentiable functions, or solve a stochastic optimization problem, to a moderate accuracy. The block coordinate descent/update (BCD) method, on the other hand, handles problems with multiple blocks of variables by updating them one at a time; when the blocks of variables are easier to update individually than together, BCD has a lower per-iteration cost. This paper introduces a method that combines the features of SG and BCD for problems with many components in the objective and with multiple (blocks of) variables. Specifically, a block stochastic gradient (BSG) method is proposed for solving both convex and nonconvex programs. At each iteration, BSG approximates the gradient of the differentiable part of the objective by randomly sampling a small set of data or sampling a few functions from the sum term in the objective, and then, using those samples, it updates all the blocks of variables in either a deterministic or a randomly shuffled order. Its convergence for both convex and nonconvex cases are established in different senses. In the convex case, the proposed method has the same order of convergence rate as the SG method. In the nonconvex case, its convergence is established in terms of the expected violation of a first-order optimality condition. The proposed method was numerically tested on problems including stochastic least squares and logistic regression, which are convex, as well as low-rank tensor recovery and bilinear logistic regression, which are nonconvex

    Distributed Big-Data Optimization via Block-Iterative Convexification and Averaging

    Full text link
    In this paper, we study distributed big-data nonconvex optimization in multi-agent networks. We consider the (constrained) minimization of the sum of a smooth (possibly) nonconvex function, i.e., the agents' sum-utility, plus a convex (possibly) nonsmooth regularizer. Our interest is in big-data problems wherein there is a large number of variables to optimize. If treated by means of standard distributed optimization algorithms, these large-scale problems may be intractable, due to the prohibitive local computation and communication burden at each node. We propose a novel distributed solution method whereby at each iteration agents optimize and then communicate (in an uncoordinated fashion) only a subset of their decision variables. To deal with non-convexity of the cost function, the novel scheme hinges on Successive Convex Approximation (SCA) techniques coupled with i) a tracking mechanism instrumental to locally estimate gradient averages; and ii) a novel block-wise consensus-based protocol to perform local block-averaging operations and gradient tacking. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Finally, numerical results show the effectiveness of the proposed algorithm and highlight how the block dimension impacts on the communication overhead and practical convergence speed

    Distributed Big-Data Optimization via Block Communications

    Get PDF
    We study distributed multi-agent large-scale optimization problems, wherein the cost function is composed of a smooth possibly nonconvex sum-utility plus a DC (Difference-of-Convex) regularizer. We consider the scenario where the dimension of the optimization variables is so large that optimizing and/or transmitting the entire set of variables could cause unaffordable computation and communication overhead. To address this issue, we propose the first distributed algorithm whereby agents optimize and communicate only a portion of their local variables. The scheme hinges on successive convex approximation (SCA) to handle the nonconvexity of the objective function, coupled with a novel block-signal tracking scheme, aiming at locally estimating the average of the agents' gradients. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Numerical results on a sparse regression problem show the effectiveness of the proposed algorithm and the impact of the block size on its practical convergence speed and communication cost

    Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization

    Full text link
    In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce the cost per iteration of the latter algorithm. We establish the rate of convergence of the SBMD method along with its associated large-deviation results for solving general nonsmooth and stochastic optimization problems. We also introduce different variants of this method and establish their rate of convergence for solving strongly convex, smooth, and composite optimization problems, as well as certain nonconvex optimization problems. To the best of our knowledge, all these developments related to the SBMD methods are new in the stochastic optimization literature. Moreover, some of our results also seem to be new for block coordinate descent methods for deterministic optimization
    • …
    corecore