101 research outputs found

    Central sets and substitutive dynamical systems

    Full text link
    In this paper we establish a new connection between central sets and the strong coincidence conjecture for fixed points of irreducible primitive substitutions of Pisot type. Central sets, first introduced by Furstenberg using notions from topological dynamics, constitute a special class of subsets of \nats possessing strong combinatorial properties: Each central set contains arbitrarily long arithmetic progressions, and solutions to all partition regular systems of homogeneous linear equations. We give an equivalent reformulation of the strong coincidence condition in terms of central sets and minimal idempotent ultrafilters in the Stone-\v{C}ech compactification \beta \nats . This provides a new arithmetical approach to an outstanding conjecture in tiling theory, the Pisot substitution conjecture. The results in this paper rely on interactions between different areas of mathematics, some of which had not previously been directly linked: They include the general theory of combinatorics on words, abstract numeration systems, tilings, topological dynamics and the algebraic/topological properties of Stone-\v{C}ech compactification of \nats.Comment: arXiv admin note: substantial text overlap with arXiv:1110.4225, arXiv:1301.511

    Mini-Workshop: The Pisot Conjecture - From Substitution Dynamical Systems to Rauzy Fractals and Meyer Sets

    Get PDF
    This mini-workshop brought together researchers with diverse backgrounds and a common interest in facets of the Pisot conjecture, which relates certain properties of a substitution to dynamical properties of the associated subshift
    corecore