1,312 research outputs found

    Regional displacement matching scheme for LBP based face recognition.

    Get PDF
    In face recognition, alignment of the face images has been a known open issue. This thesis proposes a displacement based local aligning scheme to construct a structural descriptive image template for comparison. To conquer the registration difficulties caused by the non-rigidity of human face images, a block displacement strategy is introduced to apply the regional voting scheme to face recognition field. Local Binary Pattern (LBP) is adopted to construct this block LBP displacement-based local matching approach, we name LBP-DLMA. Experiments are performed and have demonstrated the outstanding performances of this LBP-DLMA over the original LBP approach. It is expected and shown by experiments that this approach applies to both large and small sized images, and that it also applies to descriptor approaches other than LBP. --Leaf ii.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b189084

    Spontaneous Subtle Expression Detection and Recognition based on Facial Strain

    Full text link
    Optical strain is an extension of optical flow that is capable of quantifying subtle changes on faces and representing the minute facial motion intensities at the pixel level. This is computationally essential for the relatively new field of spontaneous micro-expression, where subtle expressions can be technically challenging to pinpoint. In this paper, we present a novel method for detecting and recognizing micro-expressions by utilizing facial optical strain magnitudes to construct optical strain features and optical strain weighted features. The two sets of features are then concatenated to form the resultant feature histogram. Experiments were performed on the CASME II and SMIC databases. We demonstrate on both databases, the usefulness of optical strain information and more importantly, that our best approaches are able to outperform the original baseline results for both detection and recognition tasks. A comparison of the proposed method with other existing spatio-temporal feature extraction approaches is also presented.Comment: 21 pages (including references), single column format, accepted to Signal Processing: Image Communication journa

    Reference face graph for face recognition

    Get PDF
    Face recognition has been studied extensively; however, real-world face recognition still remains a challenging task. The demand for unconstrained practical face recognition is rising with the explosion of online multimedia such as social networks, and video surveillance footage where face analysis is of significant importance. In this paper, we approach face recognition in the context of graph theory. We recognize an unknown face using an external reference face graph (RFG). An RFG is generated and recognition of a given face is achieved by comparing it to the faces in the constructed RFG. Centrality measures are utilized to identify distinctive faces in the reference face graph. The proposed RFG-based face recognition algorithm is robust to the changes in pose and it is also alignment free. The RFG recognition is used in conjunction with DCT locality sensitive hashing for efficient retrieval to ensure scalability. Experiments are conducted on several publicly available databases and the results show that the proposed approach outperforms the state-of-the-art methods without any preprocessing necessities such as face alignment. Due to the richness in the reference set construction, the proposed method can also handle illumination and expression variation

    Effective recognition of facial micro-expressions with video motion magnification

    Get PDF
    Facial expression recognition has been intensively studied for decades, notably by the psychology community and more recently the pattern recognition community. What is more challenging, and the subject of more recent research, is the problem of recognizing subtle emotions exhibited by so-called micro-expressions. Recognizing a micro-expression is substantially more challenging than conventional expression recognition because these micro-expressions are only temporally exhibited in a fraction of a second and involve minute spatial changes. Until now, work in this field is at a nascent stage, with only a few existing micro-expression databases and methods. In this article, we propose a new micro-expression recognition approach based on the Eulerian motion magnification technique, which could reveal the hidden information and accentuate the subtle changes in micro-expression motion. Validation of our proposal was done on the recently proposed CASME II dataset in comparison with baseline and state-of-the-art methods. We achieve a good recognition accuracy of up to 75.30% by using leave-one-out cross validation evaluation protocol. Extensive experiments on various factors at play further demonstrate the effectiveness of our proposed approach

    Object detection, recognition and re-identification in video footage

    Get PDF
    There has been a significant number of security concerns in recent times; as a result, security cameras have been installed to monitor activities and to prevent crimes in most public places. These analysis are done either through video analytic or forensic analysis operations on human observations. To this end, within the research context of this thesis, a proactive machine vision based military recognition system has been developed to help monitor activities in the military environment. The proposed object detection, recognition and re-identification systems have been presented in this thesis. A novel technique for military personnel recognition is presented in this thesis. Initially the detected camouflaged personnel are segmented using a grabcut segmentation algorithm. Since in general a camouflaged personnel's uniform appears to be similar both at the top and the bottom of the body, an image patch is initially extracted from the segmented foreground image and used as the region of interest. Subsequently the colour and texture features are extracted from each patch and used for classification. A second approach for personnel recognition is proposed through the recognition of the badge on the cap of a military person. A feature matching metric based on the extracted Speed Up Robust Features (SURF) from the badge on a personnel's cap enabled the recognition of the personnel's arm of service. A state-of-the-art technique for recognising vehicle types irrespective of their view angle is also presented in this thesis. Vehicles are initially detected and segmented using a Gaussian Mixture Model (GMM) based foreground/background segmentation algorithm. A Canny Edge Detection (CED) stage, followed by morphological operations are used as pre-processing stage to help enhance foreground vehicular object detection and segmentation. Subsequently, Region, Histogram Oriented Gradient (HOG) and Local Binary Pattern (LBP) features are extracted from the refined foreground vehicle object and used as features for vehicle type recognition. Two different datasets with variant views of front/rear and angle are used and combined for testing the proposed technique. For night-time video analytics and forensics, the thesis presents a novel approach to pedestrian detection and vehicle type recognition. A novel feature acquisition technique named, CENTROG, is proposed for pedestrian detection and vehicle type recognition in this thesis. Thermal images containing pedestrians and vehicular objects are used to analyse the performance of the proposed algorithms. The video is initially segmented using a GMM based foreground object segmentation algorithm. A CED based pre-processing step is used to enhance segmentation accuracy prior using Census Transforms for initial feature extraction. HOG features are then extracted from the Census transformed images and used for detection and recognition respectively of human and vehicular objects in thermal images. Finally, a novel technique for people re-identification is proposed in this thesis based on using low-level colour features and mid-level attributes. The low-level colour histogram bin values were normalised to 0 and 1. A publicly available dataset (VIPeR) and a self constructed dataset have been used in the experiments conducted with 7 clothing attributes and low-level colour histogram features. These 7 attributes are detected using features extracted from 5 different regions of a detected human object using an SVM classifier. The low-level colour features were extracted from the regions of a detected human object. These 5 regions are obtained by human object segmentation and subsequent body part sub-division. People are re-identified by computing the Euclidean distance between a probe and the gallery image sets. The experiments conducted using SVM classifier and Euclidean distance has proven that the proposed techniques attained all of the aforementioned goals. The colour and texture features proposed for camouflage military personnel recognition surpasses the state-of-the-art methods. Similarly, experiments prove that combining features performed best when recognising vehicles in different views subsequent to initial training based on multi-views. In the same vein, the proposed CENTROG technique performed better than the state-of-the-art CENTRIST technique for both pedestrian detection and vehicle type recognition at night-time using thermal images. Finally, we show that the proposed 7 mid-level attributes and the low-level features results in improved performance accuracy for people re-identification
    • …
    corecore