1,896 research outputs found

    The Goldman-Rota identity and the Grassmann scheme

    Full text link
    We inductively construct an explicit (common) orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the Grassmann scheme. The main step is a constructive, linear algebraic interpretation of the Goldman-Rota recurrence for the number of subspaces of a finite vector space. This interpretation shows that the up operator on subspaces has an explicitly given recursive structure. Using this we inductively construct an explicit orthogonal symmetric Jordan basis with respect to the up operator and write down the singular values, i.e., the ratio of the lengths of the successive vectors in the Jordan chains. The collection of all vectors in this basis of a fixed rank forms a (common) orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the Grassmann scheme. We also pose a bijective proof problem on the spanning trees of the Grassmann graphs.Comment: 19 Page

    On product, generic and random generic quantum satisfiability

    Full text link
    We report a cluster of results on k-QSAT, the problem of quantum satisfiability for k-qubit projectors which generalizes classical satisfiability with k-bit clauses to the quantum setting. First we define the NP-complete problem of product satisfiability and give a geometrical criterion for deciding when a QSAT interaction graph is product satisfiable with positive probability. We show that the same criterion suffices to establish quantum satisfiability for all projectors. Second, we apply these results to the random graph ensemble with generic projectors and obtain improved lower bounds on the location of the SAT--unSAT transition. Third, we present numerical results on random, generic satisfiability which provide estimates for the location of the transition for k=3 and k=4 and mild evidence for the existence of a phase which is satisfiable by entangled states alone.Comment: 9 pages, 5 figures, 1 table. Updated to more closely match published version. New proof in appendi

    Numerical Contractor Renormalization applied to strongly correlated systems

    Full text link
    We demonstrate the utility of effective Hamilonians for studying strongly correlated systems, such as quantum spin systems. After defining local relevant degrees of freedom, the numerical Contractor Renormalization (CORE) method is applied in two steps: (i) building an effective Hamiltonian with longer ranged interactions up to a certain cut-off using the CORE algorithm and (ii) solving this new model numerically on finite clusters by exact diagonalization and performing finite-size extrapolations to obtain results in the thermodynamic limit. This approach, giving complementary information to analytical treatments of the CORE Hamiltonian, can be used as a semi-quantitative numerical method to study frustrated magnets (as the S=1/2 kagome lattice) or doped systems.Comment: Proceedings of the conference on 'Effective Models for Low-Dimensional Strongly Correlated Systems', Peyresq, September 2005. 11 pages, 10 Figure

    RVB description of the low-energy singlets of the spin 1/2 kagome antiferromagnet

    Full text link
    {Extensive calculations in the short-range RVB (Resonating valence bond) subspace on both the trimerized and the regular (non-trimerized) Heisenberg model on the kagome lattice show that short-range dimer singlets capture the specific low-energy features of both models. In the trimerized case the singlet spectrum splits into bands in which the average number of dimers lying on one type of bonds is fixed. These results are in good agreement with the mean field solution of an effective model recently introduced. For the regular model one gets a continuous, gapless spectrum, in qualitative agreement with exact diagonalization results.Comment: 10 pages, 13 figures, 3 tables. Submitted to EPJ

    Multi-Scale Jacobi Method for Anderson Localization

    Full text link
    A new KAM-style proof of Anderson localization is obtained. A sequence of local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential decay of the eigenfunction correlator (this implies strong dynamical localization). The method has been used in recent work on many-body localization [arXiv:1403.7837].Comment: 34 pages, 8 figures, clarifications and corrections for published version; more detail in Section 4.

    Particle-hole symmetric localization in two dimensions

    Get PDF
    We revisit two-dimensional particle-hole symmetric sublattice localization problem, focusing on the origin of the observed singularities in the density of states ρ(E)\rho(E) at the band center E=0. The most general such system [R. Gade, Nucl. Phys. B {\bf 398}, 499 (1993)] exhibits critical behavior and has ρ(E)\rho(E) that diverges stronger than any integrable power-law, while the special {\it random vector potential model} of Ludwiget al [Phys. Rev. B {\bf 50}, 7526 (1994)] has instead a power-law density of states with a continuously varying dynamical exponent. We show that the latter model undergoes a dynamical transition with increasing disorder--this transition is a counterpart of the static transition known to occur in this system; in the strong-disorder regime, we identify the low-energy states of this model with the local extrema of the defining two-dimensional Gaussian random surface. Furthermore, combining this ``surface fluctuation'' mechanism with a renormalization group treatment of a related vortex glass problem leads us to argue that the asymptotic low EE behavior of the density of states in the {\it general} case is ρ(E)∌E−1e−∣ln⁥E∣2/3\rho(E) \sim E^{-1} e^{-|\ln E|^{2/3}}, different from earlier prediction of Gade. We also study the localized phases of such particle-hole symmetric systems and identify a Griffiths ``string'' mechanism that generates singular power-law contributions to the low-energy density of states in this case.Comment: 18 pages (two-column PRB format), 10 eps figures include

    Numerical Contractor Renormalization Method for Quantum Spin Models

    Get PDF
    We demonstrate the utility of the numerical Contractor Renormalization (CORE) method for quantum spin systems by studying one and two dimensional model cases. Our approach consists of two steps: (i) building an effective Hamiltonian with longer ranged interactions using the CORE algorithm and (ii) solving this new model numerically on finite clusters by exact diagonalization. This approach, giving complementary information to analytical treatments of the CORE Hamiltonian, can be used as a semi-quantitative numerical method. For ladder type geometries, we explicitely check the accuracy of the effective models by increasing the range of the effective interactions. In two dimensions we consider the plaquette lattice and the kagome lattice as non-trivial test cases for the numerical CORE method. On the plaquette lattice we have an excellent description of the system in both the disordered and the ordered phases, thereby showing that the CORE method is able to resolve quantum phase transitions. On the kagome lattice we find that the previously proposed twofold degenerate S=1/2 basis can account for a large number of phenomena of the spin 1/2 kagome system. For spin 3/2 however this basis does not seem to be sufficient anymore. In general we are able to simulate system sizes which correspond to an 8x8 lattice for the plaquette lattice or a 48-site kagome lattice, which are beyond the possibilities of a standard exact diagonalization approach.Comment: 15 page
    • 

    corecore