976 research outputs found

    Blind-Matched Filtering for Speech Enhancement with Distributed Microphones

    Get PDF

    An analysis of environment, microphone and data simulation mismatches in robust speech recognition

    Get PDF
    Speech enhancement and automatic speech recognition (ASR) are most often evaluated in matched (or multi-condition) settings where the acoustic conditions of the training data match (or cover) those of the test data. Few studies have systematically assessed the impact of acoustic mismatches between training and test data, especially concerning recent speech enhancement and state-of-the-art ASR techniques. In this article, we study this issue in the context of the CHiME- 3 dataset, which consists of sentences spoken by talkers situated in challenging noisy environments recorded using a 6-channel tablet based microphone array. We provide a critical analysis of the results published on this dataset for various signal enhancement, feature extraction, and ASR backend techniques and perform a number of new experiments in order to separately assess the impact of di↵erent noise environments, di↵erent numbers and positions of microphones, or simulated vs. real data on speech enhancement and ASR performance. We show that, with the exception of minimum variance distortionless response (MVDR) beamforming, most algorithms perform consistently on real and simulated data and can benefit from training on simulated data. We also find that training on di↵erent noise environments and di↵erent microphones barely a↵ects the ASR performance, especially when several environments are present in the training data: only the number of microphones has a significant impact. Based on these results, we introduce the CHiME-4 Speech Separation and Recognition Challenge, which revisits the CHiME-3 dataset and makes it more challenging by reducing the number of microphones available for testing

    Online Localization and Tracking of Multiple Moving Speakers in Reverberant Environments

    Get PDF
    We address the problem of online localization and tracking of multiple moving speakers in reverberant environments. The paper has the following contributions. We use the direct-path relative transfer function (DP-RTF), an inter-channel feature that encodes acoustic information robust against reverberation, and we propose an online algorithm well suited for estimating DP-RTFs associated with moving audio sources. Another crucial ingredient of the proposed method is its ability to properly assign DP-RTFs to audio-source directions. Towards this goal, we adopt a maximum-likelihood formulation and we propose to use an exponentiated gradient (EG) to efficiently update source-direction estimates starting from their currently available values. The problem of multiple speaker tracking is computationally intractable because the number of possible associations between observed source directions and physical speakers grows exponentially with time. We adopt a Bayesian framework and we propose a variational approximation of the posterior filtering distribution associated with multiple speaker tracking, as well as an efficient variational expectation-maximization (VEM) solver. The proposed online localization and tracking method is thoroughly evaluated using two datasets that contain recordings performed in real environments.Comment: IEEE Journal of Selected Topics in Signal Processing, 201

    System approach to robust acoustic echo cancellation through semi-blind source separation based on independent component analysis

    Get PDF
    We live in a dynamic world full of noises and interferences. The conventional acoustic echo cancellation (AEC) framework based on the least mean square (LMS) algorithm by itself lacks the ability to handle many secondary signals that interfere with the adaptive filtering process, e.g., local speech and background noise. In this dissertation, we build a foundation for what we refer to as the system approach to signal enhancement as we focus on the AEC problem. We first propose the residual echo enhancement (REE) technique that utilizes the error recovery nonlinearity (ERN) to "enhances" the filter estimation error prior to the filter adaptation. The single-channel AEC problem can be viewed as a special case of semi-blind source separation (SBSS) where one of the source signals is partially known, i.e., the far-end microphone signal that generates the near-end acoustic echo. SBSS optimized via independent component analysis (ICA) leads to the system combination of the LMS algorithm with the ERN that allows for continuous and stable adaptation even during double talk. Second, we extend the system perspective to the decorrelation problem for AEC, where we show that the REE procedure can be applied effectively in a multi-channel AEC (MCAEC) setting to indirectly assist the recovery of lost AEC performance due to inter-channel correlation, known generally as the "non-uniqueness" problem. We develop a novel, computationally efficient technique of frequency-domain resampling (FDR) that effectively alleviates the non-uniqueness problem directly while introducing minimal distortion to signal quality and statistics. We also apply the system approach to the multi-delay filter (MDF) that suffers from the inter-block correlation problem. Finally, we generalize the MCAEC problem in the SBSS framework and discuss many issues related to the implementation of an SBSS system. We propose a constrained batch-online implementation of SBSS that stabilizes the convergence behavior even in the worst case scenario of a single far-end talker along with the non-uniqueness condition on the far-end mixing system. The proposed techniques are developed from a pragmatic standpoint, motivated by real-world problems in acoustic and audio signal processing. Generalization of the orthogonality principle to the system level of an AEC problem allows us to relate AEC to source separation that seeks to maximize the independence, hence implicitly the orthogonality, not only between the error signal and the far-end signal, but rather, among all signals involved. The system approach, for which the REE paradigm is just one realization, enables the encompassing of many traditional signal enhancement techniques in analytically consistent yet practically effective manner for solving the enhancement problem in a very noisy and disruptive acoustic mixing environment.PhDCommittee Chair: Biing-Hwang Juang; Committee Member: Brani Vidakovic; Committee Member: David V. Anderson; Committee Member: Jeff S. Shamma; Committee Member: Xiaoli M

    Exploration and Optimization of Noise Reduction Algorithms for Speech Recognition in Embedded Devices

    Get PDF
    Environmental noise present in real-life applications substantially degrades the performance of speech recognition systems. An example is an in-car scenario where a speech recognition system has to support the man-machine interface. Several sources of noise coming from the engine, wipers, wheels etc., interact with speech. Special challenge is given in an open window scenario, where noise of traffic, park noise, etc., has to be regarded. The main goal of this thesis is to improve the performance of a speech recognition system based on a state-of-the-art hidden Markov model (HMM) using noise reduction methods. The performance is measured with respect to word error rate and with the method of mutual information. The noise reduction methods are based on weighting rules. Least-squares weighting rules in the frequency domain have been developed to enable a continuous development based on the existing system and also to guarantee its low complexity and footprint for applications in embedded devices. The weighting rule parameters are optimized employing a multidimensional optimization task method of Monte Carlo followed by a compass search method. Root compression and cepstral smoothing methods have also been implemented to boost the recognition performance. The additional complexity and memory requirements of the proposed system are minimum. The performance of the proposed system was compared to the European Telecommunications Standards Institute (ETSI) standardized system. The proposed system outperforms the ETSI system by up to 8.6 % relative increase in word accuracy and achieves up to 35.1 % relative increase in word accuracy compared to the existing baseline system on the ETSI Aurora 3 German task. A relative increase of up to 18 % in word accuracy over the existing baseline system is also obtained from the proposed weighting rules on large vocabulary databases. An entropy-based feature vector analysis method has also been developed to assess the quality of feature vectors. The entropy estimation is based on the histogram approach. The method has the advantage to objectively asses the feature vector quality regardless of the acoustic modeling assumption used in the speech recognition system

    ChordMics: Acoustic Signal Purification with Distributed Microphones

    Full text link
    Acoustic signal acts as an essential input to many systems. However, the pure acoustic signal is very difficult to extract, especially in noisy environments. Existing beamforming systems are able to extract the signal transmitted from certain directions. However, since microphones are centrally deployed, these systems have limited coverage and low spatial resolution. We overcome the above limitations and present ChordMics, a distributed beamforming system. By leveraging the spatial diversity of the distributed microphones, ChordMics is able to extract the acoustic signal from arbitrary points. To realize such a system, we further address the fundamental challenge in distributed beamforming: aligning the signals captured by distributed and unsynchronized microphones. We implement ChordMics and evaluate its performance under both LOS and NLOS scenarios. The evaluation results tell that ChordMics can deliver higher SINR than the centralized microphone array. The average performance gain is up to 15dB
    • …
    corecore