48 research outputs found

    Multichannel Speech Separation and Enhancement Using the Convolutive Transfer Function

    Get PDF
    This paper addresses the problem of speech separation and enhancement from multichannel convolutive and noisy mixtures, \emph{assuming known mixing filters}. We propose to perform the speech separation and enhancement task in the short-time Fourier transform domain, using the convolutive transfer function (CTF) approximation. Compared to time-domain filters, CTF has much less taps, consequently it has less near-common zeros among channels and less computational complexity. The work proposes three speech-source recovery methods, namely: i) the multichannel inverse filtering method, i.e. the multiple input/output inverse theorem (MINT), is exploited in the CTF domain, and for the multi-source case, ii) a beamforming-like multichannel inverse filtering method applying single source MINT and using power minimization, which is suitable whenever the source CTFs are not all known, and iii) a constrained Lasso method, where the sources are recovered by minimizing the 1\ell_1-norm to impose their spectral sparsity, with the constraint that the 2\ell_2-norm fitting cost, between the microphone signals and the mixing model involving the unknown source signals, is less than a tolerance. The noise can be reduced by setting a tolerance onto the noise power. Experiments under various acoustic conditions are carried out to evaluate the three proposed methods. The comparison between them as well as with the baseline methods is presented.Comment: Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin

    Independent Component Analysis in a convoluted world

    Get PDF

    Improved multiple input multiple output blind equalization algorithms for medical implant communication

    Get PDF
    Medical implant sensor that is used to monitor the human physiology signals is helpful to improve the quality of life and prevent severe result from the chronic diseases. In order to achieve this, the wireless implant communication link that delivers the monitored signal to a multiple antennas external device is an essential portion. However, the existing conventional narrow band Medical Implant Communications System (MICS) has low data rate because of the bandlimited channel is allocated. To improve the data rate in the radio frequency communication, ultra-wide band technology has been proposed. However, the ultra-wide band technology is relatively new and requires living human to be the test subject in order to validate the technology performance. In this condition, the test on the new technology can rise ethical challenge. As a solution, we improve the data rate in the conventional narrow band MICS. The improvement of data rate on the narrow band implies the information bandwidth is larger than the allocated channel bandwidth, and therefore the high frequency components of the information can loss. In this case, the signal suffers the intersymbol-interference (ISI). Instead of that, the multiple antennas external device can receive the signal from other transmitting implant sensor which has the same operating frequency. As a result, the signal is further hampered by co-channel interference (CCI). To recover the signal from the ISI and CCI, multiple-input multiple output (MIMO) blind equalization that has source separation ability can be exploited. Cross-Correlation Constant Modulus Algorithm (CC-CMA) is the conventional MIMO blind equalization algorithm that can suppress ISI and CCI and able to perform source separation. However, CC-CMA has only been analyzed and simulated in the modulation of Phase Shift Keying (PSK). The performance of CC-CMA in multi-modulus modulation scheme such as 4-Pulse-amplitude modulation (PAM) and 16-Quadrature amplitude modulation (QAM), which has higher data rate than PSK, has not been analyzed. Therefore, our work is to analysis and optimize CC-CMA on the multi-modulus modulation scheme. From our analysis, we found that the cost function of CC-CMA is biased cost function. Instead of that, from our simulation, CC-CMA introduces an unexpected shrinking effect whereby the amplitudes of the equalizer outputs have been reduced, especially in multi-modulus modulation scheme. This shrinking effect is not severe in PSK because the decision of a PSK symbol is based on phase, but not amplitude. Unfortunately, this is severe in multi-modulus modulation scheme. To overcome this shrinking effect in multi-modulus modulation scheme, we propose Cross-Independent Constant Modulus Algorithm (CI-CMA). Based on the convergence analysis, we identify the new optimum dispersion value and mixing parameter in CI-CMA. From the simulation results, we confirm that CI-CMA is able to perform equalization and source separation in the multi-modulus modulation scheme. In order to improve the steady state performance of CI-CMA, we perform the steady state mean square error (MSE) analysis of CI-CMA using the energy preservation theorem that was developed by Mai and Sayed in 2001, and our result is more accurate than the previous work. From our analysis, only the reduction in adaptation step size can reduce the steady state MSE, but it is well known that the MSE is indeed a tradeoff with the speed of convergence. Therefore without sacrificing convergence speed, our last effort is to propose hybrid algorithms. The hybrid algorithms are done by combining a new adaptive constant modulus algorithm (ACMA), a decision directed algorithm and a cross-correlation function. From the simulation results, we found that the hybrid algorithms can show low steady state error and thereby improve the reliability of the communication link. The main achievement of this thesis is the discovery of new dispersion value through the convergence analysis

    Blind image separation based on exponentiated transmuted Weibull distribution

    Full text link
    In recent years the processing of blind image separation has been investigated. As a result, a number of feature extraction algorithms for direct application of such image structures have been developed. For example, separation of mixed fingerprints found in any crime scene, in which a mixture of two or more fingerprints may be obtained, for identification, we have to separate them. In this paper, we have proposed a new technique for separating a multiple mixed images based on exponentiated transmuted Weibull distribution. To adaptively estimate the parameters of such score functions, an efficient method based on maximum likelihood and genetic algorithm will be used. We also calculate the accuracy of this proposed distribution and compare the algorithmic performance using the efficient approach with other previous generalized distributions. We find from the numerical results that the proposed distribution has flexibility and an efficient resultComment: 14 pages, 12 figures, 4 tables. International Journal of Computer Science and Information Security (IJCSIS),Vol. 14, No. 3, March 2016 (pp. 423-433

    Order-controlled multiple shift SBR2 algorithm for para-hermitian polynomial matrices

    Get PDF
    In this work we present a new method of controlling the order growth of polynomial matrices in the multiple shift second order sequential best rotation (MS-SBR2) algorithm which has been recently proposed by the authors for calculating the polynomial matrix eigenvalue decomposition (PEVD) for para-Hermitian matrices. In effect, the proposed method introduces a new elementary delay strategy which keeps all the row (column) shifts in the same direction throughout each iteration, which therefore gives us the flexibility to control the polynomial order growth by selecting shifts that ensure non-zero coefficients are kept closer to the zero-lag plane. Simulation results confirm that further order reductions of polynomial matrices can be achieved by using this direction-fixed delay strategy for the MS-SBR2 algorithm

    Improved multiple input multiple output blind equalization algorithms for medical implant communication

    Get PDF
    Medical implant sensor that is used to monitor the human physiology signals is helpful to improve the quality of life and prevent severe result from the chronic diseases. In order to achieve this, the wireless implant communication link that delivers the monitored signal to a multiple antennas external device is an essential portion. However, the existing conventional narrow band Medical Implant Communications System (MICS) has low data rate because of the bandlimited channel is allocated. To improve the data rate in the radio frequency communication, ultra-wide band technology has been proposed. However, the ultra-wide band technology is relatively new and requires living human to be the test subject in order to validate the technology performance. In this condition, the test on the new technology can rise ethical challenge. As a solution, we improve the data rate in the conventional narrow band MICS. The improvement of data rate on the narrow band implies the information bandwidth is larger than the allocated channel bandwidth, and therefore the high frequency components of the information can loss. In this case, the signal suffers the intersymbol-interference (ISI). Instead of that, the multiple antennas external device can receive the signal from other transmitting implant sensor which has the same operating frequency. As a result, the signal is further hampered by co-channel interference (CCI). To recover the signal from the ISI and CCI, multiple-input multiple output (MIMO) blind equalization that has source separation ability can be exploited. Cross-Correlation Constant Modulus Algorithm (CC-CMA) is the conventional MIMO blind equalization algorithm that can suppress ISI and CCI and able to perform source separation. However, CC-CMA has only been analyzed and simulated in the modulation of Phase Shift Keying (PSK). The performance of CC-CMA in multi-modulus modulation scheme such as 4-Pulse-amplitude modulation (PAM) and 16-Quadrature amplitude modulation (QAM), which has higher data rate than PSK, has not been analyzed. Therefore, our work is to analysis and optimize CC-CMA on the multi-modulus modulation scheme. From our analysis, we found that the cost function of CC-CMA is biased cost function. Instead of that, from our simulation, CC-CMA introduces an unexpected shrinking effect whereby the amplitudes of the equalizer outputs have been reduced, especially in multi-modulus modulation scheme. This shrinking effect is not severe in PSK because the decision of a PSK symbol is based on phase, but not amplitude. Unfortunately, this is severe in multi-modulus modulation scheme. To overcome this shrinking effect in multi-modulus modulation scheme, we propose Cross-Independent Constant Modulus Algorithm (CI-CMA). Based on the convergence analysis, we identify the new optimum dispersion value and mixing parameter in CI-CMA. From the simulation results, we confirm that CI-CMA is able to perform equalization and source separation in the multi-modulus modulation scheme. In order to improve the steady state performance of CI-CMA, we perform the steady state mean square error (MSE) analysis of CI-CMA using the energy preservation theorem that was developed by Mai and Sayed in 2001, and our result is more accurate than the previous work. From our analysis, only the reduction in adaptation step size can reduce the steady state MSE, but it is well known that the MSE is indeed a tradeoff with the speed of convergence. Therefore without sacrificing convergence speed, our last effort is to propose hybrid algorithms. The hybrid algorithms are done by combining a new adaptive constant modulus algorithm (ACMA), a decision directed algorithm and a cross-correlation function. From the simulation results, we found that the hybrid algorithms can show low steady state error and thereby improve the reliability of the communication link. The main achievement of this thesis is the discovery of new dispersion value through the convergence analysis

    Source Separation for Hearing Aid Applications

    Get PDF
    corecore