39,880 research outputs found

    Blind Quality Assessment for in-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training

    Full text link
    Image quality assessment (IQA) is very important for both end-users and service-providers since a high-quality image can significantly improve the user's quality of experience (QoE) and also benefit lots of computer vision algorithms. Most existing blind image quality assessment (BIQA) models were developed for synthetically distorted images, however, they perform poorly on in-the-wild images, which are widely existed in various practical applications. In this paper, we propose a novel BIQA model for in-the-wild images by addressing two critical problems in this field: how to learn better quality-aware feature representation, and how to solve the problem of insufficient training samples in terms of their content and distortion diversity. Considering that perceptual visual quality is affected by both low-level visual features (e.g. distortions) and high-level semantic information (e.g. content), we first propose a staircase structure to hierarchically integrate the features from intermediate layers into the final feature representation, which enables the model to make full use of visual information from low-level to high-level. Then an iterative mixed database training (IMDT) strategy is proposed to train the BIQA model on multiple databases simultaneously, so the model can benefit from the increase in both training samples and image content and distortion diversity and can learn a more general feature representation. Experimental results show that the proposed model outperforms other state-of-the-art BIQA models on six in-the-wild IQA databases by a large margin. Moreover, the proposed model shows an excellent performance in the cross-database evaluation experiments, which further demonstrates that the learned feature representation is robust to images with diverse distortions and content. The code will be released publicly for reproducible research

    The Perception-Distortion Tradeoff

    Full text link
    Image restoration algorithms are typically evaluated by some distortion measure (e.g. PSNR, SSIM, IFC, VIF) or by human opinion scores that quantify perceived perceptual quality. In this paper, we prove mathematically that distortion and perceptual quality are at odds with each other. Specifically, we study the optimal probability for correctly discriminating the outputs of an image restoration algorithm from real images. We show that as the mean distortion decreases, this probability must increase (indicating worse perceptual quality). As opposed to the common belief, this result holds true for any distortion measure, and is not only a problem of the PSNR or SSIM criteria. We also show that generative-adversarial-nets (GANs) provide a principled way to approach the perception-distortion bound. This constitutes theoretical support to their observed success in low-level vision tasks. Based on our analysis, we propose a new methodology for evaluating image restoration methods, and use it to perform an extensive comparison between recent super-resolution algorithms.Comment: CVPR 2018 (long oral presentation), see talk at: https://youtu.be/_aXbGqdEkjk?t=39m43
    • …
    corecore